高温导致纳尼李果采收前内部褐变的转录组和代谢组分析

IF 5.7 1区 农林科学 Q1 HORTICULTURE Horticultural Plant Journal Pub Date : 2024-03-02 DOI:10.1016/j.hpj.2023.10.004
Cheng Peng, Linping Deng, Hejun Tan, Wancong Meng, Jianliang Luo, Zengwen Zhang, Huiqiong Chen, Jishui Qiu, Xiaoxiao Chang, Yusheng Lu
{"title":"高温导致纳尼李果采收前内部褐变的转录组和代谢组分析","authors":"Cheng Peng, Linping Deng, Hejun Tan, Wancong Meng, Jianliang Luo, Zengwen Zhang, Huiqiong Chen, Jishui Qiu, Xiaoxiao Chang, Yusheng Lu","doi":"10.1016/j.hpj.2023.10.004","DOIUrl":null,"url":null,"abstract":"The preharvest internal browning of Nane plum fruit, with no visible effects on the appearance of the fruit, has become a serious problem in recent years in its production area in Guangdong Province, China. This study investigated the effects of environmental factors, including temperature, on Nane plum internal browning. Plum orchards at different elevations with different incidences of internal browning were selected. Using fruits with different internal browning incidence levels, the internal browning mechanism was analyzed with transcriptome and metabolome analyses. The results revealed decreased internal browning at high altitudes. Shading treatment significantly reduced internal browning, whereas bagging and insect-proof net-covering treatments significantly increased internal browning. Because bagging and net coverings increase the local ambient temperature, the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum. The metabolome experiments showed that with increased internal browning, the levels of phenolic hydroxyls such as catechol increased, with simultaneous increases in hydrogen peroxide content and oxidase activity. It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum. Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning, possibly due to its increased content in the fruit. Further, with increasingly serious internal browning, genes related to photosynthesis were down-regulated, while genes related to senescence were up-regulated, thus suggesting the up-regulation of the process of cell senescence during internal browning. In conclusion, heat stress should be eliminated to reduce preharvest internal browning in Nane plum.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"87 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperatures\",\"authors\":\"Cheng Peng, Linping Deng, Hejun Tan, Wancong Meng, Jianliang Luo, Zengwen Zhang, Huiqiong Chen, Jishui Qiu, Xiaoxiao Chang, Yusheng Lu\",\"doi\":\"10.1016/j.hpj.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preharvest internal browning of Nane plum fruit, with no visible effects on the appearance of the fruit, has become a serious problem in recent years in its production area in Guangdong Province, China. This study investigated the effects of environmental factors, including temperature, on Nane plum internal browning. Plum orchards at different elevations with different incidences of internal browning were selected. Using fruits with different internal browning incidence levels, the internal browning mechanism was analyzed with transcriptome and metabolome analyses. The results revealed decreased internal browning at high altitudes. Shading treatment significantly reduced internal browning, whereas bagging and insect-proof net-covering treatments significantly increased internal browning. Because bagging and net coverings increase the local ambient temperature, the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum. The metabolome experiments showed that with increased internal browning, the levels of phenolic hydroxyls such as catechol increased, with simultaneous increases in hydrogen peroxide content and oxidase activity. It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum. Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning, possibly due to its increased content in the fruit. Further, with increasingly serious internal browning, genes related to photosynthesis were down-regulated, while genes related to senescence were up-regulated, thus suggesting the up-regulation of the process of cell senescence during internal browning. In conclusion, heat stress should be eliminated to reduce preharvest internal browning in Nane plum.\",\"PeriodicalId\":13178,\"journal\":{\"name\":\"Horticultural Plant Journal\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticultural Plant Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.hpj.2023.10.004\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2023.10.004","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在中国广东省的脆李产区,脆李采收前的内部褐变已成为一个严重问题,且对果实外观无明显影响。本研究探讨了温度等环境因素对纳恩李内部褐变的影响。研究选择了不同海拔高度、内部褐变发生率不同的梅园。利用不同内部褐变发生率水平的果实,通过转录组和代谢组分析内部褐变机制。结果表明,高海拔地区内部褐变程度降低。遮光处理明显减少了内部褐变,而套袋和防虫网覆盖处理则明显增加了内部褐变。由于套袋和防虫网覆盖会增加当地的环境温度,因此研究结果表明,高温是影响脆李内部褐变的一个重要因素。代谢组实验表明,随着内部褐变的增加,儿茶酚等酚羟基的含量也随之增加,过氧化氢含量和氧化酶活性也同时增加。可以推测,酚羟基物质的氧化是造成脆李采前褐变的主要原因。转录组分析表明,钙信号相关基因和下游效应基因的表达量增加,表明钙在内部褐变中起着重要作用,这可能是由于钙在果实中的含量增加所致。此外,随着内部褐变越来越严重,与光合作用相关的基因下调,而与衰老相关的基因上调,这表明内部褐变过程中细胞衰老过程上调。总之,应消除热胁迫,以减少脆李采收前的内部褐变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperatures
The preharvest internal browning of Nane plum fruit, with no visible effects on the appearance of the fruit, has become a serious problem in recent years in its production area in Guangdong Province, China. This study investigated the effects of environmental factors, including temperature, on Nane plum internal browning. Plum orchards at different elevations with different incidences of internal browning were selected. Using fruits with different internal browning incidence levels, the internal browning mechanism was analyzed with transcriptome and metabolome analyses. The results revealed decreased internal browning at high altitudes. Shading treatment significantly reduced internal browning, whereas bagging and insect-proof net-covering treatments significantly increased internal browning. Because bagging and net coverings increase the local ambient temperature, the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum. The metabolome experiments showed that with increased internal browning, the levels of phenolic hydroxyls such as catechol increased, with simultaneous increases in hydrogen peroxide content and oxidase activity. It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum. Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning, possibly due to its increased content in the fruit. Further, with increasingly serious internal browning, genes related to photosynthesis were down-regulated, while genes related to senescence were up-regulated, thus suggesting the up-regulation of the process of cell senescence during internal browning. In conclusion, heat stress should be eliminated to reduce preharvest internal browning in Nane plum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticultural Plant Journal
Horticultural Plant Journal Environmental Science-Ecology
CiteScore
9.60
自引率
14.00%
发文量
293
审稿时长
33 weeks
期刊介绍: Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.
期刊最新文献
Banana defense response against pathogens: Breeding disease-resistant cultivars Knockdown of SlEMS1 causes male sterility in tomato Multi-omics analysis of peach-like aroma formation in fruits of wild strawberry (Fragaria nilgerrensis) An efficient irrigation method for facility-cultivated grape trees at various stages of development A feedback loop comprising RhMYB114 and RhMYB16 regulates anthocyanin accumulation and tissue acidification in Rosa hybrida
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1