Ying Sun , Xiaohui Jin , Zuwang Yang , Zunhan Hu , Qiulu Li , Jingquan Dong , Mian Fu
{"title":"阿魏酸通过调节氧化损伤、炎症和细胞凋亡,减轻双唑醇暴露诱发的鲤鱼肝损伤。","authors":"Ying Sun , Xiaohui Jin , Zuwang Yang , Zunhan Hu , Qiulu Li , Jingquan Dong , Mian Fu","doi":"10.1016/j.cbpc.2024.109885","DOIUrl":null,"url":null,"abstract":"<div><p>Difenoconazole (DFZ) is a widely used triazole fungicide in agricultural production. However, the presence of DFZ residue in the environment poses a significant risk to non-target organisms. Ferulic acid (FA) is a phenolic compound known for its antioxidant and anti-inflammatory properties. This study aims to investigate the hepatic damage caused by DFZ in carp and explore the mechanism through which FA alleviates this damage. The findings revealed that FA enhanced the antioxidant capability of the carp's liver and reduced the accumulation of reactive oxygen species (ROS) in the liver tissue. Moreover, FA regulated the transcriptional levels of inflammation-related factors, effectively preventing the inflammatory response triggered by the NF-κB signaling pathway. Additionally, TUNEL results demonstrated that DFZ initiated apoptosis, while dietary supplementation with FA decreased the protein expression levels of Bax and Cytochrome C (Cyt c) and the transcriptional levels of <em>bax</em>, <em>caspase3</em>, <em>caspase9</em>, <em>p53</em> genes. Furthermore, FA increased the protein expression and transcriptional levels of Bcl-2. In conclusion, FA protects against liver injury induced by DFZ exposure in carp by modulating oxidative damage, inflammation, and apoptosis.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferulic acid attenuates difenoconazole exposure induced liver injury in carp by modulating oxidative damage, inflammation and apoptosis\",\"authors\":\"Ying Sun , Xiaohui Jin , Zuwang Yang , Zunhan Hu , Qiulu Li , Jingquan Dong , Mian Fu\",\"doi\":\"10.1016/j.cbpc.2024.109885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Difenoconazole (DFZ) is a widely used triazole fungicide in agricultural production. However, the presence of DFZ residue in the environment poses a significant risk to non-target organisms. Ferulic acid (FA) is a phenolic compound known for its antioxidant and anti-inflammatory properties. This study aims to investigate the hepatic damage caused by DFZ in carp and explore the mechanism through which FA alleviates this damage. The findings revealed that FA enhanced the antioxidant capability of the carp's liver and reduced the accumulation of reactive oxygen species (ROS) in the liver tissue. Moreover, FA regulated the transcriptional levels of inflammation-related factors, effectively preventing the inflammatory response triggered by the NF-κB signaling pathway. Additionally, TUNEL results demonstrated that DFZ initiated apoptosis, while dietary supplementation with FA decreased the protein expression levels of Bax and Cytochrome C (Cyt c) and the transcriptional levels of <em>bax</em>, <em>caspase3</em>, <em>caspase9</em>, <em>p53</em> genes. Furthermore, FA increased the protein expression and transcriptional levels of Bcl-2. In conclusion, FA protects against liver injury induced by DFZ exposure in carp by modulating oxidative damage, inflammation, and apoptosis.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S153204562400053X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S153204562400053X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ferulic acid attenuates difenoconazole exposure induced liver injury in carp by modulating oxidative damage, inflammation and apoptosis
Difenoconazole (DFZ) is a widely used triazole fungicide in agricultural production. However, the presence of DFZ residue in the environment poses a significant risk to non-target organisms. Ferulic acid (FA) is a phenolic compound known for its antioxidant and anti-inflammatory properties. This study aims to investigate the hepatic damage caused by DFZ in carp and explore the mechanism through which FA alleviates this damage. The findings revealed that FA enhanced the antioxidant capability of the carp's liver and reduced the accumulation of reactive oxygen species (ROS) in the liver tissue. Moreover, FA regulated the transcriptional levels of inflammation-related factors, effectively preventing the inflammatory response triggered by the NF-κB signaling pathway. Additionally, TUNEL results demonstrated that DFZ initiated apoptosis, while dietary supplementation with FA decreased the protein expression levels of Bax and Cytochrome C (Cyt c) and the transcriptional levels of bax, caspase3, caspase9, p53 genes. Furthermore, FA increased the protein expression and transcriptional levels of Bcl-2. In conclusion, FA protects against liver injury induced by DFZ exposure in carp by modulating oxidative damage, inflammation, and apoptosis.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.