Carl Bonander, Anton Nilsson, Huiqi Li, Shambhavi Sharma, Chioma Nwaru, Magnus Gisslén, Magnus Lindh, Niklas Hammar, Jonas Björk, Fredrik Nyberg
{"title":"基于捕获-再捕获的确定概率加权法,用于结果不确定的效应估计。","authors":"Carl Bonander, Anton Nilsson, Huiqi Li, Shambhavi Sharma, Chioma Nwaru, Magnus Gisslén, Magnus Lindh, Niklas Hammar, Jonas Björk, Fredrik Nyberg","doi":"10.1097/EDE.0000000000001717","DOIUrl":null,"url":null,"abstract":"<p><p>Outcome under-ascertainment, characterized by the incomplete identification or reporting of cases, poses a substantial challenge in epidemiologic research. While capture-recapture methods can estimate unknown case numbers, their role in estimating exposure effects in observational studies is not well established. This paper presents an ascertainment probability weighting framework that integrates capture-recapture and propensity score weighting. We propose a nonparametric estimator of effects on binary outcomes that combines exposure propensity scores with data from two conditionally independent outcome measurements to simultaneously adjust for confounding and under-ascertainment. Demonstrating its practical application, we apply the method to estimate the relationship between health care work and coronavirus disease 2019 testing in a Swedish region. We find that ascertainment probability weighting greatly influences the estimated association compared to conventional inverse probability weighting, underscoring the importance of accounting for under-ascertainment in studies with limited outcome data coverage. We conclude with practical guidelines for the method's implementation, discussing its strengths, limitations, and suitable scenarios for application.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"340-348"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022997/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Capture-Recapture-based Ascertainment Probability Weighting Method for Effect Estimation With Under-ascertained Outcomes.\",\"authors\":\"Carl Bonander, Anton Nilsson, Huiqi Li, Shambhavi Sharma, Chioma Nwaru, Magnus Gisslén, Magnus Lindh, Niklas Hammar, Jonas Björk, Fredrik Nyberg\",\"doi\":\"10.1097/EDE.0000000000001717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Outcome under-ascertainment, characterized by the incomplete identification or reporting of cases, poses a substantial challenge in epidemiologic research. While capture-recapture methods can estimate unknown case numbers, their role in estimating exposure effects in observational studies is not well established. This paper presents an ascertainment probability weighting framework that integrates capture-recapture and propensity score weighting. We propose a nonparametric estimator of effects on binary outcomes that combines exposure propensity scores with data from two conditionally independent outcome measurements to simultaneously adjust for confounding and under-ascertainment. Demonstrating its practical application, we apply the method to estimate the relationship between health care work and coronavirus disease 2019 testing in a Swedish region. We find that ascertainment probability weighting greatly influences the estimated association compared to conventional inverse probability weighting, underscoring the importance of accounting for under-ascertainment in studies with limited outcome data coverage. We conclude with practical guidelines for the method's implementation, discussing its strengths, limitations, and suitable scenarios for application.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"340-348\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001717\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001717","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A Capture-Recapture-based Ascertainment Probability Weighting Method for Effect Estimation With Under-ascertained Outcomes.
Outcome under-ascertainment, characterized by the incomplete identification or reporting of cases, poses a substantial challenge in epidemiologic research. While capture-recapture methods can estimate unknown case numbers, their role in estimating exposure effects in observational studies is not well established. This paper presents an ascertainment probability weighting framework that integrates capture-recapture and propensity score weighting. We propose a nonparametric estimator of effects on binary outcomes that combines exposure propensity scores with data from two conditionally independent outcome measurements to simultaneously adjust for confounding and under-ascertainment. Demonstrating its practical application, we apply the method to estimate the relationship between health care work and coronavirus disease 2019 testing in a Swedish region. We find that ascertainment probability weighting greatly influences the estimated association compared to conventional inverse probability weighting, underscoring the importance of accounting for under-ascertainment in studies with limited outcome data coverage. We conclude with practical guidelines for the method's implementation, discussing its strengths, limitations, and suitable scenarios for application.
期刊介绍:
Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.