皮肤间质和血液中的 GH 和 IGF-1 与运动的年轻人的热损失反应有关。

IF 2.8 3区 医学 Q2 PHYSIOLOGY European Journal of Applied Physiology Pub Date : 2024-08-01 Epub Date: 2024-03-06 DOI:10.1007/s00421-024-05448-9
Gulinu Maimaituxun, Tatsuro Amano, Glen P Kenny, Toby Mündel, Masanobu Kajiki, Kaname Tagawa, Akira Katagiri, Yoko Tanabe, Koichi Watanabe, Takeshi Nishiyasu, Narihiko Kondo, Naoto Fujii
{"title":"皮肤间质和血液中的 GH 和 IGF-1 与运动的年轻人的热损失反应有关。","authors":"Gulinu Maimaituxun, Tatsuro Amano, Glen P Kenny, Toby Mündel, Masanobu Kajiki, Kaname Tagawa, Akira Katagiri, Yoko Tanabe, Koichi Watanabe, Takeshi Nishiyasu, Narihiko Kondo, Naoto Fujii","doi":"10.1007/s00421-024-05448-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation.</p><p><strong>Methods: </strong>Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO<sub>2peak</sub>) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies.</p><p><strong>Results: </strong>Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC.</p><p><strong>Conclusion: </strong>(1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GH and IGF-1 in skin interstitial fluid and blood are associated with heat loss responses in exercising young adults.\",\"authors\":\"Gulinu Maimaituxun, Tatsuro Amano, Glen P Kenny, Toby Mündel, Masanobu Kajiki, Kaname Tagawa, Akira Katagiri, Yoko Tanabe, Koichi Watanabe, Takeshi Nishiyasu, Narihiko Kondo, Naoto Fujii\",\"doi\":\"10.1007/s00421-024-05448-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation.</p><p><strong>Methods: </strong>Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO<sub>2peak</sub>) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies.</p><p><strong>Results: </strong>Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC.</p><p><strong>Conclusion: </strong>(1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.</p>\",\"PeriodicalId\":12005,\"journal\":{\"name\":\"European Journal of Applied Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00421-024-05448-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-024-05448-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:汗腺和皮肤血管具有生长激素(GH)和胰岛素样生长因子 1(IGF-1)受体。在此,我们评估了运动是否会增加皮肤间质中的 GH 和 IGF-1,以及皮肤间质/血液中 GH 和 IGF-1 浓度的基线和运动诱导的增加是否与出汗和皮肤血管扩张的热损失反应有关:方法:16 名年轻成年人(7 名女性)进行了 50 分钟中等强度运动(50% VO2 峰值),期间采集了皮肤透析液和血液样本。在一项子研究(n = 7,4 名女性)中,我们通过皮内微量透析向皮肤间质注射了不同浓度的 GH(0.025-4000 纳克/毫升)和 IGF-1(0.000256-100 微克/毫升)。两项研究均连续测量了出汗率(通气胶囊)和皮肤血管传导率(CVC):结论:(1)运动会增加皮肤间质中的 GH 和 IGF-1 水平;(2)运动引起的出汗与皮肤间质和血液中的基线 GH 以及运动引起的血液中 GH 和 IGF-1 的增加有关;(3)运动时的皮肤血管扩张与皮肤间质和血液中的 GH 和 IGF-1 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GH and IGF-1 in skin interstitial fluid and blood are associated with heat loss responses in exercising young adults.

Purpose: Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation.

Methods: Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO2peak) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies.

Results: Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC.

Conclusion: (1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
6.70%
发文量
227
审稿时长
3 months
期刊介绍: The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.
期刊最新文献
Ratings of perceived exertion (RPE) from a submaximal 20-m shuttle-run test accurately predict children's VO2peak, but when should we stop the test? The effects of exercise, heat-induced hypo-hydration and rehydration on blood-brain-barrier permeability, corticospinal and peripheral excitability. Detrended fluctuation analysis to determine physiologic thresholds, investigation and evidence from incremental cycling test. Mechanical power distribution of the lower limbs changed during intermittent 300 countermovement jumps. Environmental study and stress-related biomarkers modifications in a crew during analog astronaut mission EMMPOL 6.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1