Fanyu Zhang, Yilu Li, Lin Liu, Yefen Liu, Pan Wang, Bharat B Biswal
{"title":"对患有注意力缺陷/多动症的儿童和青少年进行皮质脑干因果关系分析。","authors":"Fanyu Zhang, Yilu Li, Lin Liu, Yefen Liu, Pan Wang, Bharat B Biswal","doi":"10.1111/pcn.13650","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD.</p><p><strong>Methods: </strong>We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways.</p><p><strong>Results: </strong>Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD.</p><p><strong>Conclusion: </strong>The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.</p>","PeriodicalId":20938,"journal":{"name":"Psychiatry and Clinical Neurosciences","volume":" ","pages":"291-299"},"PeriodicalIF":5.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469573/pdf/","citationCount":"0","resultStr":"{\"title\":\"Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder.\",\"authors\":\"Fanyu Zhang, Yilu Li, Lin Liu, Yefen Liu, Pan Wang, Bharat B Biswal\",\"doi\":\"10.1111/pcn.13650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD.</p><p><strong>Methods: </strong>We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways.</p><p><strong>Results: </strong>Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD.</p><p><strong>Conclusion: </strong>The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.</p>\",\"PeriodicalId\":20938,\"journal\":{\"name\":\"Psychiatry and Clinical Neurosciences\",\"volume\":\" \",\"pages\":\"291-299\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469573/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatry and Clinical Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pcn.13650\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry and Clinical Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pcn.13650","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder.
Aim: The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD.
Methods: We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways.
Results: Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD.
Conclusion: The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.
期刊介绍:
PCN (Psychiatry and Clinical Neurosciences)
Publication Frequency:
Published 12 online issues a year by JSPN
Content Categories:
Review Articles
Regular Articles
Letters to the Editor
Peer Review Process:
All manuscripts undergo peer review by anonymous reviewers, an Editorial Board Member, and the Editor
Publication Criteria:
Manuscripts are accepted based on quality, originality, and significance to the readership
Authors must confirm that the manuscript has not been published or submitted elsewhere and has been approved by each author