{"title":"捕鲸和磷虾捕捞对鲸鱼-磷虾捕食动态的影响:具有霍林 I 型功能响应的捕食者-猎物收获模型中的分岔。","authors":"Qin Pan, Min Lu, Jicai Huang, Shigui Ruan","doi":"10.1007/s00285-024-02063-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the Antarctic, the whale population had been reduced dramatically due to the unregulated whaling. It was expected that Antarctic krill, the main prey of whales, would grow significantly as a consequence and exploratory krill fishing was practiced in some areas. However, it was found that there has been a substantial decline in abundance of krill since the end of whaling, which is the phenomenon of krill paradox. In this paper, to study the krill-whale interaction we revisit a harvested predator-prey model with Holling I functional response. We find that the model admits at most two positive equilibria. When the two positive equilibria are located in the region <math> <mrow> <mrow><mrow><mo>{</mo></mrow> <mrow><mo>(</mo> <mi>N</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo></mrow> <mo>|</mo> <mn>0</mn> <mo>≤</mo> <mi>N</mi> <mo><</mo> <mn>2</mn></mrow> <msub><mi>N</mi> <mi>c</mi></msub> <mo>,</mo> <mspace></mspace> <mi>P</mi> <mo>≥</mo> <mn>0</mn> <mrow><mo>}</mo></mrow> </mrow> </math> , the model exhibits degenerate Bogdanov-Takens bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to 2 by rigorous bifurcation analysis. When the two positive equilibria are located in the region <math> <mrow> <mrow><mrow><mo>{</mo></mrow> <mrow><mo>(</mo> <mi>N</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo></mrow> <mo>|</mo> <mi>N</mi> <mo>></mo> <mn>2</mn></mrow> <msub><mi>N</mi> <mi>c</mi></msub> <mo>,</mo> <mspace></mspace> <mi>P</mi> <mo>≥</mo> <mn>0</mn> <mrow><mo>}</mo></mrow> </mrow> </math> , the model has no complex bifurcation phenomenon. When there is one positive equilibrium on each side of <math><mrow><mi>N</mi> <mo>=</mo> <mn>2</mn> <msub><mi>N</mi> <mi>c</mi></msub> </mrow> </math> , the model undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simulation reveals that the model not only can exhibit the krill paradox phenomenon but also has three limit cycles, with the outmost one crosses the line <math><mrow><mi>N</mi> <mo>=</mo> <mn>2</mn> <msub><mi>N</mi> <mi>c</mi></msub> </mrow> </math> under some specific parameter conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of whaling and krill fishing on the whale-krill predation dynamics: bifurcations in a harvested predator-prey model with Holling type I functional response.\",\"authors\":\"Qin Pan, Min Lu, Jicai Huang, Shigui Ruan\",\"doi\":\"10.1007/s00285-024-02063-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the Antarctic, the whale population had been reduced dramatically due to the unregulated whaling. It was expected that Antarctic krill, the main prey of whales, would grow significantly as a consequence and exploratory krill fishing was practiced in some areas. However, it was found that there has been a substantial decline in abundance of krill since the end of whaling, which is the phenomenon of krill paradox. In this paper, to study the krill-whale interaction we revisit a harvested predator-prey model with Holling I functional response. We find that the model admits at most two positive equilibria. When the two positive equilibria are located in the region <math> <mrow> <mrow><mrow><mo>{</mo></mrow> <mrow><mo>(</mo> <mi>N</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo></mrow> <mo>|</mo> <mn>0</mn> <mo>≤</mo> <mi>N</mi> <mo><</mo> <mn>2</mn></mrow> <msub><mi>N</mi> <mi>c</mi></msub> <mo>,</mo> <mspace></mspace> <mi>P</mi> <mo>≥</mo> <mn>0</mn> <mrow><mo>}</mo></mrow> </mrow> </math> , the model exhibits degenerate Bogdanov-Takens bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to 2 by rigorous bifurcation analysis. When the two positive equilibria are located in the region <math> <mrow> <mrow><mrow><mo>{</mo></mrow> <mrow><mo>(</mo> <mi>N</mi> <mo>,</mo> <mi>P</mi> <mo>)</mo></mrow> <mo>|</mo> <mi>N</mi> <mo>></mo> <mn>2</mn></mrow> <msub><mi>N</mi> <mi>c</mi></msub> <mo>,</mo> <mspace></mspace> <mi>P</mi> <mo>≥</mo> <mn>0</mn> <mrow><mo>}</mo></mrow> </mrow> </math> , the model has no complex bifurcation phenomenon. When there is one positive equilibrium on each side of <math><mrow><mi>N</mi> <mo>=</mo> <mn>2</mn> <msub><mi>N</mi> <mi>c</mi></msub> </mrow> </math> , the model undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simulation reveals that the model not only can exhibit the krill paradox phenomenon but also has three limit cycles, with the outmost one crosses the line <math><mrow><mi>N</mi> <mo>=</mo> <mn>2</mn> <msub><mi>N</mi> <mi>c</mi></msub> </mrow> </math> under some specific parameter conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02063-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02063-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在南极,由于无管制的捕鲸活动,鲸鱼数量急剧减少。原以为鲸鱼的主要猎物南极磷虾会因此大幅增加,并在一些地区开展了试捕磷虾的活动。然而,人们发现,捕鲸活动结束后,磷虾的数量大幅下降,这就是磷虾悖论现象。在本文中,为了研究磷虾与鲸鱼之间的相互作用,我们重新研究了一个具有霍林 I 功能响应的捕食者-猎物模型。我们发现,该模型最多存在两个正均衡。当这两个正均衡位于 { ( N , P ) | 0 ≤ N 2 N c , P ≥ 0 } 区域时,模型表现出退化的波特兰均衡。 通过严格的分岔分析,该模型表现出代码维最高为 3 的退化波格丹诺夫-塔肯斯分岔和代码维最高为 2 的霍普夫分岔。当两个正平衡位于区域 { ( N , P ) | N > 2 N c , P ≥ 0 } 时,模型没有复分叉。 时,模型没有复杂的分岔现象。此外,数值模拟表明,该模型不仅能表现出磷虾悖论现象,而且有三个极限循环,其中最外层的循环在特定参数条件下越过了 N = 2 N c。
Effects of whaling and krill fishing on the whale-krill predation dynamics: bifurcations in a harvested predator-prey model with Holling type I functional response.
In the Antarctic, the whale population had been reduced dramatically due to the unregulated whaling. It was expected that Antarctic krill, the main prey of whales, would grow significantly as a consequence and exploratory krill fishing was practiced in some areas. However, it was found that there has been a substantial decline in abundance of krill since the end of whaling, which is the phenomenon of krill paradox. In this paper, to study the krill-whale interaction we revisit a harvested predator-prey model with Holling I functional response. We find that the model admits at most two positive equilibria. When the two positive equilibria are located in the region , the model exhibits degenerate Bogdanov-Takens bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to 2 by rigorous bifurcation analysis. When the two positive equilibria are located in the region , the model has no complex bifurcation phenomenon. When there is one positive equilibrium on each side of , the model undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simulation reveals that the model not only can exhibit the krill paradox phenomenon but also has three limit cycles, with the outmost one crosses the line under some specific parameter conditions.