模型选择后的推理引导和似然模型的模型平均法

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Metrika Pub Date : 2024-03-05 DOI:10.1007/s00184-024-00956-2
Andrea C. Garcia-Angulo, Gerda Claeskens
{"title":"模型选择后的推理引导和似然模型的模型平均法","authors":"Andrea C. Garcia-Angulo, Gerda Claeskens","doi":"10.1007/s00184-024-00956-2","DOIUrl":null,"url":null,"abstract":"<p>A one-step semiparametric bootstrap procedure is constructed to estimate the distribution of estimators after model selection and of model averaging estimators with data-dependent weights. The method is generally applicable to non-normal models. Misspecification is allowed for all candidate parametric models. The semiparametric bootstrap estimator is shown to be consistent within specific regions such that the good and the bad candidate models are separated. Simulation studies exemplify that the bootstrap procedure leads to short confidence intervals with a good coverage.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap for inference after model selection and model averaging for likelihood models\",\"authors\":\"Andrea C. Garcia-Angulo, Gerda Claeskens\",\"doi\":\"10.1007/s00184-024-00956-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A one-step semiparametric bootstrap procedure is constructed to estimate the distribution of estimators after model selection and of model averaging estimators with data-dependent weights. The method is generally applicable to non-normal models. Misspecification is allowed for all candidate parametric models. The semiparametric bootstrap estimator is shown to be consistent within specific regions such that the good and the bad candidate models are separated. Simulation studies exemplify that the bootstrap procedure leads to short confidence intervals with a good coverage.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00956-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00956-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文构建了一种一步半参数引导程序,用于估计模型选择后估计子的分布,以及带有数据相关权重的模型平均估计子的分布。该方法一般适用于非正态模型。允许对所有候选参数模型进行错误规范。半参数自举估计器在特定区域内是一致的,因此好的和坏的候选模型是分开的。仿真研究表明,自举程序可以得到覆盖范围较小的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bootstrap for inference after model selection and model averaging for likelihood models

A one-step semiparametric bootstrap procedure is constructed to estimate the distribution of estimators after model selection and of model averaging estimators with data-dependent weights. The method is generally applicable to non-normal models. Misspecification is allowed for all candidate parametric models. The semiparametric bootstrap estimator is shown to be consistent within specific regions such that the good and the bad candidate models are separated. Simulation studies exemplify that the bootstrap procedure leads to short confidence intervals with a good coverage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
期刊最新文献
Smoothed partially linear varying coefficient quantile regression with nonignorable missing response Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost Construction of three-level factorial designs with general minimum lower-order confounding via resolution IV designs Mean test for high-dimensional data based on covariance matrix with linear structures Bounds of expectations of order statistics for distributions possessing monotone reversed failure rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1