M.R.M. Aliha , H.G. Kouchaki , M.H. Mohammadi , P.J. Haghighatpour , N. Choupani , P. Asadi , M. Akbari , M.G. Darvish , T. Sadowski
{"title":"环氧基聚合物混凝土混合物的断裂韧性测定:不同矩形梁和圆盘试样的适用性","authors":"M.R.M. Aliha , H.G. Kouchaki , M.H. Mohammadi , P.J. Haghighatpour , N. Choupani , P. Asadi , M. Akbari , M.G. Darvish , T. Sadowski","doi":"10.1016/j.jcomc.2024.100446","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this study was to examine the potential impact of the testing procedure, the shape of the test sample, loading method and sample size on the <em>K</em><sub>Ic</sub> value of polymer concrete (PC) materials. The research involved experimental investigations using five different testing techniques and specimen types, namely the single edge notched beam (SENB), short bend beam (SBB), semi-circular bend (SCB), edge notch disc bend (ENDB), and center cracked Brazilian disc (CCBD). A typical PC mixture made of mineral silicious aggregate, ML506 epoxy resin, chopped E-glass, and foundry sand filler. Despite the difference in the shape and loading type of the tested samples, the <em>K</em><sub>Ic</sub> data obtained from all groups of specimens are in good agreement with together and with the SENB proposed by RILEM. Depending on the test type, the <em>K</em><sub>Ic</sub> value varied from 1.43 to 1.74 MPa.m<sup>0.5</sup> and the discrepancy between the data was mainly attributed to the type of loading (compression or bending) and the crack type (center crack or edge crack). The <em>T</em>-stress affects the fracture toughness for different testing samples and configurations. The lowest fracture toughness corresponds to the CCBD specimen (the center cracked disc loaded diametrically). The other test samples with edge cracks and loaded by a three-point bend setup showed <em>K</em><sub>Ic</sub> = 1.7 - 1.74 MPa.m<sup>0.5</sup>. Moreover, the fracture toughness data for PC mixtures can be achieved by utilizing sub-sized samples like SBB (for smaller amounts of PC material) instead of larger beam samples (i.e., SENB).</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100446"},"PeriodicalIF":5.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000173/pdfft?md5=60e8cd568c1e5017fb88a7877802a160&pid=1-s2.0-S2666682024000173-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fracture toughness determination for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens\",\"authors\":\"M.R.M. Aliha , H.G. Kouchaki , M.H. Mohammadi , P.J. Haghighatpour , N. Choupani , P. Asadi , M. Akbari , M.G. Darvish , T. Sadowski\",\"doi\":\"10.1016/j.jcomc.2024.100446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this study was to examine the potential impact of the testing procedure, the shape of the test sample, loading method and sample size on the <em>K</em><sub>Ic</sub> value of polymer concrete (PC) materials. The research involved experimental investigations using five different testing techniques and specimen types, namely the single edge notched beam (SENB), short bend beam (SBB), semi-circular bend (SCB), edge notch disc bend (ENDB), and center cracked Brazilian disc (CCBD). A typical PC mixture made of mineral silicious aggregate, ML506 epoxy resin, chopped E-glass, and foundry sand filler. Despite the difference in the shape and loading type of the tested samples, the <em>K</em><sub>Ic</sub> data obtained from all groups of specimens are in good agreement with together and with the SENB proposed by RILEM. Depending on the test type, the <em>K</em><sub>Ic</sub> value varied from 1.43 to 1.74 MPa.m<sup>0.5</sup> and the discrepancy between the data was mainly attributed to the type of loading (compression or bending) and the crack type (center crack or edge crack). The <em>T</em>-stress affects the fracture toughness for different testing samples and configurations. The lowest fracture toughness corresponds to the CCBD specimen (the center cracked disc loaded diametrically). The other test samples with edge cracks and loaded by a three-point bend setup showed <em>K</em><sub>Ic</sub> = 1.7 - 1.74 MPa.m<sup>0.5</sup>. Moreover, the fracture toughness data for PC mixtures can be achieved by utilizing sub-sized samples like SBB (for smaller amounts of PC material) instead of larger beam samples (i.e., SENB).</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"14 \",\"pages\":\"Article 100446\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000173/pdfft?md5=60e8cd568c1e5017fb88a7877802a160&pid=1-s2.0-S2666682024000173-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在考察测试程序、测试样本形状、加载方法和样本大小对聚合物混凝土(PC)材料价值的潜在影响。研究使用了五种不同的测试技术和试样类型,即单边缺口梁(SENB)、短弯梁(SBB)、半圆弯梁(SCB)、边缘缺口圆盘弯梁(ENDB)和中心开裂巴西圆盘(CCBD)。典型的 PC 混合物由矿物硅质骨料、ML506 环氧树脂、切碎的 E 玻璃和铸造砂填料制成。尽管测试样品的形状和加载类型各不相同,但从各组试样中获得的数据与 RILEM 提出的 SENB 一致。根据测试类型的不同,数值从 1.43 到 1.74 MPa.m 不等,数据之间的差异主要归因于加载类型(压缩或弯曲)和裂纹类型(中心裂纹或边缘裂纹)。应力会影响不同测试样品和结构的断裂韧性。断裂韧性最低的是 CCBD 试样(中心裂纹圆盘直径加载)。此外,PC 混合物的断裂韧性数据可通过使用 SBB(用于较少量的 PC 材料)等次尺寸试样而非较大的梁试样(即 SENB)来获得。
Fracture toughness determination for epoxy-based polymer concrete mixtures: Applicability of different rectangular beam and circular disc specimens
The purpose of this study was to examine the potential impact of the testing procedure, the shape of the test sample, loading method and sample size on the KIc value of polymer concrete (PC) materials. The research involved experimental investigations using five different testing techniques and specimen types, namely the single edge notched beam (SENB), short bend beam (SBB), semi-circular bend (SCB), edge notch disc bend (ENDB), and center cracked Brazilian disc (CCBD). A typical PC mixture made of mineral silicious aggregate, ML506 epoxy resin, chopped E-glass, and foundry sand filler. Despite the difference in the shape and loading type of the tested samples, the KIc data obtained from all groups of specimens are in good agreement with together and with the SENB proposed by RILEM. Depending on the test type, the KIc value varied from 1.43 to 1.74 MPa.m0.5 and the discrepancy between the data was mainly attributed to the type of loading (compression or bending) and the crack type (center crack or edge crack). The T-stress affects the fracture toughness for different testing samples and configurations. The lowest fracture toughness corresponds to the CCBD specimen (the center cracked disc loaded diametrically). The other test samples with edge cracks and loaded by a three-point bend setup showed KIc = 1.7 - 1.74 MPa.m0.5. Moreover, the fracture toughness data for PC mixtures can be achieved by utilizing sub-sized samples like SBB (for smaller amounts of PC material) instead of larger beam samples (i.e., SENB).