重新审视基于 PM 的 B$^{+}$ 树与持久 CPU 高速缓存

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-03-05 DOI:10.1109/TPDS.2024.3372621
Bowen Zhang;Shengan Zheng;Liangxu Nie;Zhenlin Qi;Hongyi Chen;Linpeng Huang;Hong Mei
{"title":"重新审视基于 PM 的 B$^{+}$ 树与持久 CPU 高速缓存","authors":"Bowen Zhang;Shengan Zheng;Liangxu Nie;Zhenlin Qi;Hongyi Chen;Linpeng Huang;Hong Mei","doi":"10.1109/TPDS.2024.3372621","DOIUrl":null,"url":null,"abstract":"Persistent memory (PM) promises near-DRAM performance as well as data persistence. Recently, a new feature called eADR is available for PM-equipped platforms to guarantee the persistence of CPU cache. The emergence of eADR presents unique opportunities to build lock-free data structures and unleash the full potential of PM. In this paper, we propose NBTree, a lock-free PM-friendly B\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\n-Tree, to deliver high scalability and low PM overhead. To our knowledge, NBTree is the first persistent index designed for PM systems with persistent CPU cache. To achieve lock-free, NBTree uses atomic primitives to serialize index operations. Moreover, NBTree proposes five novel techniques to enable lock-free accesses during structural modification operations (SMO), including \n<i>three-phase SMO</i>\n, \n<i>sync-on-write</i>\n, \n<i>sync-on-read</i>\n, \n<i>cooperative SMO</i>\n, and \n<i>shift-aware search</i>\n. To reduce PM access overhead, NBTree employs a decoupled leaf node design to absorb the metadata accesses in DRAM. Moreover, NBTree devises a cache-crafty persistent allocator and adopts \n<i>log-structured insert</i>\n and \n<i>in-place update/delete</i>\n to enhance the access locality of write operations, absorbing a substantial amount of PM writes in persistent CPU cache. Our evaluation shows that NBTree achieves up to 11× higher throughput and 43× lower 99% tail latency than state-of-the-art persistent B\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\n-Trees under YCSB workloads.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting PM-Based B$^{+}$+-Tree With Persistent CPU Cache\",\"authors\":\"Bowen Zhang;Shengan Zheng;Liangxu Nie;Zhenlin Qi;Hongyi Chen;Linpeng Huang;Hong Mei\",\"doi\":\"10.1109/TPDS.2024.3372621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent memory (PM) promises near-DRAM performance as well as data persistence. Recently, a new feature called eADR is available for PM-equipped platforms to guarantee the persistence of CPU cache. The emergence of eADR presents unique opportunities to build lock-free data structures and unleash the full potential of PM. In this paper, we propose NBTree, a lock-free PM-friendly B\\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\\n-Tree, to deliver high scalability and low PM overhead. To our knowledge, NBTree is the first persistent index designed for PM systems with persistent CPU cache. To achieve lock-free, NBTree uses atomic primitives to serialize index operations. Moreover, NBTree proposes five novel techniques to enable lock-free accesses during structural modification operations (SMO), including \\n<i>three-phase SMO</i>\\n, \\n<i>sync-on-write</i>\\n, \\n<i>sync-on-read</i>\\n, \\n<i>cooperative SMO</i>\\n, and \\n<i>shift-aware search</i>\\n. To reduce PM access overhead, NBTree employs a decoupled leaf node design to absorb the metadata accesses in DRAM. Moreover, NBTree devises a cache-crafty persistent allocator and adopts \\n<i>log-structured insert</i>\\n and \\n<i>in-place update/delete</i>\\n to enhance the access locality of write operations, absorbing a substantial amount of PM writes in persistent CPU cache. Our evaluation shows that NBTree achieves up to 11× higher throughput and 43× lower 99% tail latency than state-of-the-art persistent B\\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\\n-Trees under YCSB workloads.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10458428/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10458428/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

持久内存(PM)具有接近 DRAM 的性能和数据持久性。最近,一种名为 eADR 的新功能可用于配备 PM 的平台,以保证 CPU 高速缓存的持久性。eADR 的出现为构建无锁数据结构和释放 PM 的全部潜力提供了独特的机会。在本文中,我们提出了一种无锁的 PM友好型 B$^+$ 树--NBTree,以提供高可扩展性和低 PM 开销。据我们所知,NBTree 是第一个为带有持久 CPU 缓存的 PM 系统设计的持久索引。为了实现无锁,NBTree 使用原子基元来序列化索引操作。此外,NBTree 还提出了五种新技术来实现结构修改操作(SMO)期间的无锁访问,包括三相 SMO、写同步、读同步、合作 SMO 和移位感知搜索。为减少 PM 访问开销,NBTree 采用了解耦叶节点设计,以吸收 DRAM 中的元数据访问。此外,NBTree 还设计了一个高速缓存持久分配器,并采用日志结构插入和就地更新/删除来增强写操作的访问本地性,从而在持久 CPU 高速缓存中吸收了大量的 PM 写入。我们的评估结果表明,在 YCSB 工作负载下,NBTree 比最先进的持久性 B$^+$-Trees 高出 11 倍的吞吐量,比 99% 的尾部延迟低 43 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting PM-Based B$^{+}$+-Tree With Persistent CPU Cache
Persistent memory (PM) promises near-DRAM performance as well as data persistence. Recently, a new feature called eADR is available for PM-equipped platforms to guarantee the persistence of CPU cache. The emergence of eADR presents unique opportunities to build lock-free data structures and unleash the full potential of PM. In this paper, we propose NBTree, a lock-free PM-friendly B $^+$ -Tree, to deliver high scalability and low PM overhead. To our knowledge, NBTree is the first persistent index designed for PM systems with persistent CPU cache. To achieve lock-free, NBTree uses atomic primitives to serialize index operations. Moreover, NBTree proposes five novel techniques to enable lock-free accesses during structural modification operations (SMO), including three-phase SMO , sync-on-write , sync-on-read , cooperative SMO , and shift-aware search . To reduce PM access overhead, NBTree employs a decoupled leaf node design to absorb the metadata accesses in DRAM. Moreover, NBTree devises a cache-crafty persistent allocator and adopts log-structured insert and in-place update/delete to enhance the access locality of write operations, absorbing a substantial amount of PM writes in persistent CPU cache. Our evaluation shows that NBTree achieves up to 11× higher throughput and 43× lower 99% tail latency than state-of-the-art persistent B $^+$ -Trees under YCSB workloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
Freyr$^+$:Harvesting Idle Resources in Serverless Computing Via Deep Reinforcement Learning Efficient Inference for Pruned CNN Models on Mobile Devices With Holistic Sparsity Alignment Efficient Cross-Cloud Partial Reduce With CREW DeepCAT+: A Low-Cost and Transferrable Online Configuration Auto-Tuning Approach for Big Data Frameworks An Evaluation Framework for Dynamic Thermal Management Strategies in 3D MultiProcessor System-on-Chip Co-Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1