具有输入非线性和干扰的不确定连续机器人的自适应逼近滑模控制

IF 1.8 4区 计算机科学 Q3 ENGINEERING, BIOMEDICAL Applied Bionics and Biomechanics Pub Date : 2024-03-06 DOI:10.1155/2024/8533606
Shoulin Xu
{"title":"具有输入非线性和干扰的不确定连续机器人的自适应逼近滑模控制","authors":"Shoulin Xu","doi":"10.1155/2024/8533606","DOIUrl":null,"url":null,"abstract":"This paper develops an adaptive nonsingular fast terminal sliding-mode control (ANFTSMC) scheme for the continuum robot subjected to uncertain dynamics, external disturbances, and input nonlinearities (e.g., actuator deadzones/faults). Concretely, a function approximation technique (FAT) is utilized to estimate unknown robot dynamics and actuator deadzones/faults online. Furthermore, a disturbance observer (DO) is devised to make up for unknown external disturbances. Then, an ANFTSMC scheme combined with FAT and DO is developed, to expedite the restoration of the stability for the continuum robot. The proposed ANFTSMC not only can retain the benefits of traditional terminal sliding-mode control (TSMC), containing easy enforcement, quick response, and robustness to uncertainties but also dispose of the latent singularity for traditional faster TSMC designs. Afterward, the simulation results show that the proposed controller can effectively improve the trajectory tracking accuracy of the continuum robot, and the tracking root-mean-square errors are 0.0115 and 0.0128 rad. Finally, the effectiveness of ANFTSMC scheme is validated by experiments.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"301 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Approximation Sliding-Mode Control of an Uncertain Continuum Robot with Input Nonlinearities and Disturbances\",\"authors\":\"Shoulin Xu\",\"doi\":\"10.1155/2024/8533606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an adaptive nonsingular fast terminal sliding-mode control (ANFTSMC) scheme for the continuum robot subjected to uncertain dynamics, external disturbances, and input nonlinearities (e.g., actuator deadzones/faults). Concretely, a function approximation technique (FAT) is utilized to estimate unknown robot dynamics and actuator deadzones/faults online. Furthermore, a disturbance observer (DO) is devised to make up for unknown external disturbances. Then, an ANFTSMC scheme combined with FAT and DO is developed, to expedite the restoration of the stability for the continuum robot. The proposed ANFTSMC not only can retain the benefits of traditional terminal sliding-mode control (TSMC), containing easy enforcement, quick response, and robustness to uncertainties but also dispose of the latent singularity for traditional faster TSMC designs. Afterward, the simulation results show that the proposed controller can effectively improve the trajectory tracking accuracy of the continuum robot, and the tracking root-mean-square errors are 0.0115 and 0.0128 rad. Finally, the effectiveness of ANFTSMC scheme is validated by experiments.\",\"PeriodicalId\":8029,\"journal\":{\"name\":\"Applied Bionics and Biomechanics\",\"volume\":\"301 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Bionics and Biomechanics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8533606\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/8533606","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文针对不确定动态、外部干扰和输入非线性(如致动器死区/故障)的连续体机器人,开发了一种自适应非奇异快速终端滑模控制(ANFTSMC)方案。具体来说,利用函数逼近技术(FAT)来在线估计未知的机器人动力学和致动器死区/故障。此外,还设计了一个干扰观测器(DO)来弥补未知的外部干扰。然后,开发出一种与 FAT 和 DO 相结合的 ANFTSMC 方案,以加快连续机器人稳定性的恢复。所提出的 ANFTSMC 不仅保留了传统末端滑模控制(TSMC)的优点,包括易于执行、快速响应和对不确定性的鲁棒性,还消除了传统快速 TSMC 设计的潜在奇异性。随后,仿真结果表明,所提出的控制器能有效提高连续体机器人的轨迹跟踪精度,跟踪均方根误差分别为 0.0115 和 0.0128 rad。最后,实验验证了 ANFTSMC 方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Approximation Sliding-Mode Control of an Uncertain Continuum Robot with Input Nonlinearities and Disturbances
This paper develops an adaptive nonsingular fast terminal sliding-mode control (ANFTSMC) scheme for the continuum robot subjected to uncertain dynamics, external disturbances, and input nonlinearities (e.g., actuator deadzones/faults). Concretely, a function approximation technique (FAT) is utilized to estimate unknown robot dynamics and actuator deadzones/faults online. Furthermore, a disturbance observer (DO) is devised to make up for unknown external disturbances. Then, an ANFTSMC scheme combined with FAT and DO is developed, to expedite the restoration of the stability for the continuum robot. The proposed ANFTSMC not only can retain the benefits of traditional terminal sliding-mode control (TSMC), containing easy enforcement, quick response, and robustness to uncertainties but also dispose of the latent singularity for traditional faster TSMC designs. Afterward, the simulation results show that the proposed controller can effectively improve the trajectory tracking accuracy of the continuum robot, and the tracking root-mean-square errors are 0.0115 and 0.0128 rad. Finally, the effectiveness of ANFTSMC scheme is validated by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Bionics and Biomechanics
Applied Bionics and Biomechanics ENGINEERING, BIOMEDICAL-ROBOTICS
自引率
4.50%
发文量
338
审稿时长
>12 weeks
期刊介绍: Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.
期刊最新文献
Design and Control of an Upper Limb Bionic Exoskeleton Rehabilitation Device Based on Tensegrity Structure. The Effect of Different Degrees of Ankle Dorsiflexion Restriction on the Biomechanics of the Lower Extremity in Stop-Jumping. Evaluation of Cyclic Fatigue Resistance of Novel Replica-Like Instruments in Static Test Model. UCH-L1 Inhibitor Alleviates Nerve Damage Caused by Moyamoya Disease. Influence of Critical Shoulder Angle and Rotator Cuff Tear Type on Load-Induced Glenohumeral Biomechanics: A Sawbone Simulator Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1