通过帕塞里尼三组份聚合技术实现光响应自惰性 L-谷氨酸基聚酯纳米颗粒的药物控释

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-03-04 DOI:10.1007/s10118-024-3093-9
Xiao-Fei Sun, Xu Zhang, Shu-Ping Song, Ya-Qun Yao, Yan Zhang, Cheng-Liang Wang, Jing-Jiang Sun, Qing-Fu Wang
{"title":"通过帕塞里尼三组份聚合技术实现光响应自惰性 L-谷氨酸基聚酯纳米颗粒的药物控释","authors":"Xiao-Fei Sun,&nbsp;Xu Zhang,&nbsp;Shu-Ping Song,&nbsp;Ya-Qun Yao,&nbsp;Yan Zhang,&nbsp;Cheng-Liang Wang,&nbsp;Jing-Jiang Sun,&nbsp;Qing-Fu Wang","doi":"10.1007/s10118-024-3093-9","DOIUrl":null,"url":null,"abstract":"<div><p><i>L</i>-glutamic acid (LA) is a bio-based, non-toxic, environmentally friendly material derived from biomass. The present study reports the application of Passerini three-component polymerization (P-3CP) for the straightforward preparation of LA-based light-responsive polyesters (PLTDs) under mild conditions. PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90% are obtained. The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible (UV-Vis) spectroscopy, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography mass spectrometry (LC-MS). Meanwhile, monodisperse PLTD-based doxorubicin-loaded nanoparticles (PLTD-DOX-NP) (size=193 nm, PDI=0.018) are formulated by nanoprecipitation method. Upon light-induced depolymerization, the PLTD-DOX-NP undergoes rapid decomposition, resulting in a burst release of 80% cargo within 13 s. Furthermore, according to biological toxicity tests, the PLTD-NP possesses adequate biosafety, both before and after irradiation. Overall, the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry, significantly simplifying the synthetic pathway of light-responsive polymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-responsive Self-Immolative L-glutamic Acid-based Polyester Nanoparticles for Controlled Drug Release via Passerini Three-Component Polymerization\",\"authors\":\"Xiao-Fei Sun,&nbsp;Xu Zhang,&nbsp;Shu-Ping Song,&nbsp;Ya-Qun Yao,&nbsp;Yan Zhang,&nbsp;Cheng-Liang Wang,&nbsp;Jing-Jiang Sun,&nbsp;Qing-Fu Wang\",\"doi\":\"10.1007/s10118-024-3093-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>L</i>-glutamic acid (LA) is a bio-based, non-toxic, environmentally friendly material derived from biomass. The present study reports the application of Passerini three-component polymerization (P-3CP) for the straightforward preparation of LA-based light-responsive polyesters (PLTDs) under mild conditions. PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90% are obtained. The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible (UV-Vis) spectroscopy, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography mass spectrometry (LC-MS). Meanwhile, monodisperse PLTD-based doxorubicin-loaded nanoparticles (PLTD-DOX-NP) (size=193 nm, PDI=0.018) are formulated by nanoprecipitation method. Upon light-induced depolymerization, the PLTD-DOX-NP undergoes rapid decomposition, resulting in a burst release of 80% cargo within 13 s. Furthermore, according to biological toxicity tests, the PLTD-NP possesses adequate biosafety, both before and after irradiation. Overall, the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry, significantly simplifying the synthetic pathway of light-responsive polymers.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3093-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3093-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 L-谷氨酸(LA)是从生物质中提取的一种生物基无毒环保材料。本研究报告了帕塞里尼三组份聚合法(P-3CP)在温和条件下直接制备基于 LA 的光响应聚酯(PLTDs)的应用。所制备的 PLTD 摩尔质量高达 8500 g/mol,高产率超过 90%。利用紫外-可见光谱(UV-Vis)、尺寸排阻色谱(SEC)、核磁共振(NMR)光谱和液相色谱质谱(LC-MS)对 PLTD 的化学结构和光响应自焚烧行为进行了全面表征。同时,采用纳米沉淀法制备了基于 PLTD 的单分散多柔比星负载纳米粒子(PLTD-DOX-NP)(尺寸=193 nm,PDI=0.018)。光诱导解聚后,PLTD-DOX-NP迅速分解,在13秒内迸发释放出80%的货物。此外,根据生物毒性测试,PLTD-NP在辐照前后都具有足够的生物安全性。总之,P-3CP 与可生物再生的 LA 基单体的结合符合绿色化学原则,大大简化了光响应聚合物的合成途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-responsive Self-Immolative L-glutamic Acid-based Polyester Nanoparticles for Controlled Drug Release via Passerini Three-Component Polymerization

L-glutamic acid (LA) is a bio-based, non-toxic, environmentally friendly material derived from biomass. The present study reports the application of Passerini three-component polymerization (P-3CP) for the straightforward preparation of LA-based light-responsive polyesters (PLTDs) under mild conditions. PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90% are obtained. The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible (UV-Vis) spectroscopy, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and liquid chromatography mass spectrometry (LC-MS). Meanwhile, monodisperse PLTD-based doxorubicin-loaded nanoparticles (PLTD-DOX-NP) (size=193 nm, PDI=0.018) are formulated by nanoprecipitation method. Upon light-induced depolymerization, the PLTD-DOX-NP undergoes rapid decomposition, resulting in a burst release of 80% cargo within 13 s. Furthermore, according to biological toxicity tests, the PLTD-NP possesses adequate biosafety, both before and after irradiation. Overall, the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry, significantly simplifying the synthetic pathway of light-responsive polymers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Special Issue: Dynamic Polymer Networks Regulation of Mechanical Properties of Conductive Polymer Composites High Performance Microwave Absorption Material Based on Metal-Backboned Polymer Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1