{"title":"关于固定翼无人机辅助实用全双工中继的节能问题(带服务要求和偏角限制","authors":"Xuan Zhu , Xiaodong Ji , Senyi Shi , Jian-Feng Gu","doi":"10.1016/j.vehcom.2024.100749","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a full-duplex (FD) amplify-and-forward relaying, where a fixed-wing unmanned aerial vehicle (UAV) is dispatched as a mobile relay to serve a source-destination communication pair so as to satisfy their service requirement. Here, the UAV relay flies in a circular path and hence it must continuously change its heading of flight which leads to a bank angle of the aircraft. In order to ensure flight safety, therefore, a bank angle limit is imposed on the UAV relay. By considering a practical FD relaying, namely, there exists both residual loop interference (RLI) and processing time-delay at the relay side, novel signal to interference plus noise ratio (SINR) received at the destination is analyzed, giving a closed-form expression in addition to a concise lower-bound. Armed with the SINR analysis, the size of data received by the destination during a period of flight time of the UAV is calculated, leading to a closed-form lower-bound of the size of data. Taking bank angle limit into consideration and using the calculated lower-bound of the size of data, an optimization problem with the purpose of energy conservation is solved, leading to a novel method for joint adjustment of the UAV's flight parameters. Computer simulation experiments are conducted, and the results demonstrated that the proposed optimization method performs better in terms of energy conservation compared to the benchmark techniques regardless of the value of RLI and/or the service requirement of the source-destination communication pair.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100749"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On energy conservation for fixed-wing UAV assisted practical full-duplex relaying with service requirement and bank angle limit\",\"authors\":\"Xuan Zhu , Xiaodong Ji , Senyi Shi , Jian-Feng Gu\",\"doi\":\"10.1016/j.vehcom.2024.100749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies a full-duplex (FD) amplify-and-forward relaying, where a fixed-wing unmanned aerial vehicle (UAV) is dispatched as a mobile relay to serve a source-destination communication pair so as to satisfy their service requirement. Here, the UAV relay flies in a circular path and hence it must continuously change its heading of flight which leads to a bank angle of the aircraft. In order to ensure flight safety, therefore, a bank angle limit is imposed on the UAV relay. By considering a practical FD relaying, namely, there exists both residual loop interference (RLI) and processing time-delay at the relay side, novel signal to interference plus noise ratio (SINR) received at the destination is analyzed, giving a closed-form expression in addition to a concise lower-bound. Armed with the SINR analysis, the size of data received by the destination during a period of flight time of the UAV is calculated, leading to a closed-form lower-bound of the size of data. Taking bank angle limit into consideration and using the calculated lower-bound of the size of data, an optimization problem with the purpose of energy conservation is solved, leading to a novel method for joint adjustment of the UAV's flight parameters. Computer simulation experiments are conducted, and the results demonstrated that the proposed optimization method performs better in terms of energy conservation compared to the benchmark techniques regardless of the value of RLI and/or the service requirement of the source-destination communication pair.</p></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"47 \",\"pages\":\"Article 100749\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221420962400024X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221420962400024X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
On energy conservation for fixed-wing UAV assisted practical full-duplex relaying with service requirement and bank angle limit
This paper studies a full-duplex (FD) amplify-and-forward relaying, where a fixed-wing unmanned aerial vehicle (UAV) is dispatched as a mobile relay to serve a source-destination communication pair so as to satisfy their service requirement. Here, the UAV relay flies in a circular path and hence it must continuously change its heading of flight which leads to a bank angle of the aircraft. In order to ensure flight safety, therefore, a bank angle limit is imposed on the UAV relay. By considering a practical FD relaying, namely, there exists both residual loop interference (RLI) and processing time-delay at the relay side, novel signal to interference plus noise ratio (SINR) received at the destination is analyzed, giving a closed-form expression in addition to a concise lower-bound. Armed with the SINR analysis, the size of data received by the destination during a period of flight time of the UAV is calculated, leading to a closed-form lower-bound of the size of data. Taking bank angle limit into consideration and using the calculated lower-bound of the size of data, an optimization problem with the purpose of energy conservation is solved, leading to a novel method for joint adjustment of the UAV's flight parameters. Computer simulation experiments are conducted, and the results demonstrated that the proposed optimization method performs better in terms of energy conservation compared to the benchmark techniques regardless of the value of RLI and/or the service requirement of the source-destination communication pair.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.