用于 5G 便携式电子设备无源热管理的可持续材料发展趋势

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2024-03-06 DOI:10.1007/s13204-024-03033-2
Sriharini Senthilkumar, Brindha Ramasubramanian, Subramanian Sundarrajan, Seeram Ramakrishna
{"title":"用于 5G 便携式电子设备无源热管理的可持续材料发展趋势","authors":"Sriharini Senthilkumar,&nbsp;Brindha Ramasubramanian,&nbsp;Subramanian Sundarrajan,&nbsp;Seeram Ramakrishna","doi":"10.1007/s13204-024-03033-2","DOIUrl":null,"url":null,"abstract":"<div><p>The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"543 - 557"},"PeriodicalIF":3.6740,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in sustainable materials for passive thermal management in 5G enabled portable electronics\",\"authors\":\"Sriharini Senthilkumar,&nbsp;Brindha Ramasubramanian,&nbsp;Subramanian Sundarrajan,&nbsp;Seeram Ramakrishna\",\"doi\":\"10.1007/s13204-024-03033-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 3\",\"pages\":\"543 - 557\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-024-03033-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03033-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于设备在运行过程中会产生大量热量,导致人体温度升高和设备寿命缩短,因此 5G 支持的便携式电子设备对被动热调节的要求不断提高。本文探讨了水凝胶、金属有机框架(MOFs)和相变材料(PCMs)等利用自然对流和辐射从设备中散热的各种材料及其潜在挑战和改进方案。水凝胶由于缺乏循环稳定性和有限的水吸附能力而不是最佳材料,而 MOFs 价格昂贵,PCMs 在固-液转换过程中会出现内部泄漏。因此,我们讨论了新型混合材料的见解及其在热阻方面的潜力。研究考虑了材料的市场营销和可持续性。为提高材料性能,建议在早期阶段加入可回收、生物质衍生或对环境有益的材料。针对支持 5G 的便携式电子产品的发热问题,文章介绍了实用的无源热管理材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trends in sustainable materials for passive thermal management in 5G enabled portable electronics

The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Exploring SrTiO3 nanoparticles thereby unveiling the impact of europium (Eu3⁺) doping Performance SiO2, GO, and SiO2@GO nanomaterials on fabricating new polymer nanocomposites for optical, antibacterial, and anticancer applications Properties of single-walled carbon nanotube film/Si heterojunctions fabricated in situ Advances in silver nanoparticles: unraveling biological activities, mechanisms of action, and toxicity Comparative evaluation of antibacterial efficacy of silver nanoparticles synthesized with Cannabis sativa extract at different concentrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1