Yan Lin, Chen Huang, Caoxing Huang, Yongjun Deng, Xiuxiu Zou, Wencan Ma, Guigan Fang, Arthur J. Ragauskas
{"title":"具有分层多孔结构的纤维素调控木质素/纤维素基碳材料用于储能","authors":"Yan Lin, Chen Huang, Caoxing Huang, Yongjun Deng, Xiuxiu Zou, Wencan Ma, Guigan Fang, Arthur J. Ragauskas","doi":"10.1007/s42114-024-00850-5","DOIUrl":null,"url":null,"abstract":"<div><p>Lignin has gained extensive attention as an ideal carbon precursor due to its abundance and high carbon content. However, the agglomeration of lignin and additional corrosive and unrecyclable reagents in direct pyrolysis still limit the development of lignin-based porous carbons. Herein, a facile and eco-friendly strategy was proposed to fabricate hierarchical porous lignin/cellulose-based carbon materials (LCs). In the process, cellulose nanofibrils acted as the skeleton of the bio-aerogels, which supported lignin and benefit the preparation of the LCs. Moreover, the specific surface area and the graphitization degree of LCs can be regulated by varying the cellulose content. Without activation, the bio-based carbon material (LC30) had a high specific surface area of 1770 m<sup>2</sup> g<sup>−1</sup>, which displayed high specific capacitance of 216.2 F g<sup>−1</sup> at the current density of 0.5 A g<sup>−1</sup>. The supercapacitor based on LC30 also showed outstanding energy density of 12.3 Wh kg<sup>−1</sup> at the power density of 50 W kg<sup>−1</sup>. The sustainable raw material, simple and harmless preparation process, and remarkable electrochemical performance enable LC30, a promising supercapacitor electrode for energy storage.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose regulated lignin/cellulose-based carbon materials with hierarchical porous structure for energy storage\",\"authors\":\"Yan Lin, Chen Huang, Caoxing Huang, Yongjun Deng, Xiuxiu Zou, Wencan Ma, Guigan Fang, Arthur J. Ragauskas\",\"doi\":\"10.1007/s42114-024-00850-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lignin has gained extensive attention as an ideal carbon precursor due to its abundance and high carbon content. However, the agglomeration of lignin and additional corrosive and unrecyclable reagents in direct pyrolysis still limit the development of lignin-based porous carbons. Herein, a facile and eco-friendly strategy was proposed to fabricate hierarchical porous lignin/cellulose-based carbon materials (LCs). In the process, cellulose nanofibrils acted as the skeleton of the bio-aerogels, which supported lignin and benefit the preparation of the LCs. Moreover, the specific surface area and the graphitization degree of LCs can be regulated by varying the cellulose content. Without activation, the bio-based carbon material (LC30) had a high specific surface area of 1770 m<sup>2</sup> g<sup>−1</sup>, which displayed high specific capacitance of 216.2 F g<sup>−1</sup> at the current density of 0.5 A g<sup>−1</sup>. The supercapacitor based on LC30 also showed outstanding energy density of 12.3 Wh kg<sup>−1</sup> at the power density of 50 W kg<sup>−1</sup>. The sustainable raw material, simple and harmless preparation process, and remarkable electrochemical performance enable LC30, a promising supercapacitor electrode for energy storage.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00850-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00850-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
摘要 木质素因其丰富的资源和较高的含碳量而作为一种理想的碳前体受到广泛关注。然而,直接热解过程中木质素的团聚以及额外的腐蚀性和不可回收的试剂仍然限制着木质素基多孔碳的发展。在此,我们提出了一种简便、环保的策略来制造分层多孔木质素/纤维素基碳材料(LCs)。在此过程中,纤维素纳米纤维作为生物气凝胶的骨架,支撑着木质素,有利于多孔碳材料的制备。此外,还可通过改变纤维素含量来调节 LCs 的比表面积和石墨化程度。未经活化的生物基碳材料(LC30)具有 1770 m2 g-1 的高比表面积,在 0.5 A g-1 的电流密度下具有 216.2 F g-1 的高比电容。基于 LC30 的超级电容器在功率密度为 50 W kg-1 时的能量密度也高达 12.3 Wh kg-1。可持续的原材料、简单无害的制备工艺和显著的电化学性能使 LC30 成为一种前景广阔的超级电容器储能电极。
Cellulose regulated lignin/cellulose-based carbon materials with hierarchical porous structure for energy storage
Lignin has gained extensive attention as an ideal carbon precursor due to its abundance and high carbon content. However, the agglomeration of lignin and additional corrosive and unrecyclable reagents in direct pyrolysis still limit the development of lignin-based porous carbons. Herein, a facile and eco-friendly strategy was proposed to fabricate hierarchical porous lignin/cellulose-based carbon materials (LCs). In the process, cellulose nanofibrils acted as the skeleton of the bio-aerogels, which supported lignin and benefit the preparation of the LCs. Moreover, the specific surface area and the graphitization degree of LCs can be regulated by varying the cellulose content. Without activation, the bio-based carbon material (LC30) had a high specific surface area of 1770 m2 g−1, which displayed high specific capacitance of 216.2 F g−1 at the current density of 0.5 A g−1. The supercapacitor based on LC30 also showed outstanding energy density of 12.3 Wh kg−1 at the power density of 50 W kg−1. The sustainable raw material, simple and harmless preparation process, and remarkable electrochemical performance enable LC30, a promising supercapacitor electrode for energy storage.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.