Rahul Jude Alroy, K. Praveen, Junaid Syed, L. Rama Krishna, G. Sivakumar
{"title":"等离子体喷涂土著 Yb2Zr2O7 和传统 YSZ 涂层在高温下抗火山灰渗透性的研究","authors":"Rahul Jude Alroy, K. Praveen, Junaid Syed, L. Rama Krishna, G. Sivakumar","doi":"10.1007/s11085-024-10226-1","DOIUrl":null,"url":null,"abstract":"<div><p>The modern turbines aimed to work at enhanced efficiencies demand the use of a novel high-performance thermal barrier coating (TBC) which may be susceptible to multiple failure modes. Specifically, ingestion of calcium–magnesium–alumino–silicate (CMAS) or volcanic ash (VA) at elevated temperatures induce accelerated deterioration of conventional yttria-stabilized zirconia (YSZ) TBCs. The ability to form an impervious and rapidly crystallizing rare earth-based apatite layer upon interaction with CMAS/VA salt favors the choice of rare earth zirconates (REZs) as novel TBCs. Among diverse REZs, Yb<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (YbZ) exhibits ideal TBC characteristics. A detailed insight into YbZ coating characteristics and performance is vitally needed to qualify these materials for TBC applications. Accordingly, in this study indigenously developed YbZ and commercial YSZ were deposited by air plasma spraying. Subsequently, the VA infiltration resistance of deposited coatings was comprehensively compared up to 1350 °C. The SEM analysis of VA-infiltrated YSZ and YbZ coatings revealed the thickness of the infiltration zone and the corresponding mechanism. YbZ coatings displayed significantly better VA infiltration resistance attributed to forming an impervious Yb-apatite-based arresting layer and pinning the further seepage of the VA salt front. Besides, VA rapidly infiltrated YSZ coatings, which failed to form an arresting layer. Overall, the study provides essential insights and thrust in developing next-generation TBCs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 3","pages":"573 - 588"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation on Volcanic Ash Infiltration Resistance of Plasma-Sprayed Indigenous Yb2Zr2O7 and Conventional YSZ Coatings at Elevated Temperatures\",\"authors\":\"Rahul Jude Alroy, K. Praveen, Junaid Syed, L. Rama Krishna, G. Sivakumar\",\"doi\":\"10.1007/s11085-024-10226-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The modern turbines aimed to work at enhanced efficiencies demand the use of a novel high-performance thermal barrier coating (TBC) which may be susceptible to multiple failure modes. Specifically, ingestion of calcium–magnesium–alumino–silicate (CMAS) or volcanic ash (VA) at elevated temperatures induce accelerated deterioration of conventional yttria-stabilized zirconia (YSZ) TBCs. The ability to form an impervious and rapidly crystallizing rare earth-based apatite layer upon interaction with CMAS/VA salt favors the choice of rare earth zirconates (REZs) as novel TBCs. Among diverse REZs, Yb<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (YbZ) exhibits ideal TBC characteristics. A detailed insight into YbZ coating characteristics and performance is vitally needed to qualify these materials for TBC applications. Accordingly, in this study indigenously developed YbZ and commercial YSZ were deposited by air plasma spraying. Subsequently, the VA infiltration resistance of deposited coatings was comprehensively compared up to 1350 °C. The SEM analysis of VA-infiltrated YSZ and YbZ coatings revealed the thickness of the infiltration zone and the corresponding mechanism. YbZ coatings displayed significantly better VA infiltration resistance attributed to forming an impervious Yb-apatite-based arresting layer and pinning the further seepage of the VA salt front. Besides, VA rapidly infiltrated YSZ coatings, which failed to form an arresting layer. Overall, the study provides essential insights and thrust in developing next-generation TBCs.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 3\",\"pages\":\"573 - 588\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10226-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10226-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
An Investigation on Volcanic Ash Infiltration Resistance of Plasma-Sprayed Indigenous Yb2Zr2O7 and Conventional YSZ Coatings at Elevated Temperatures
The modern turbines aimed to work at enhanced efficiencies demand the use of a novel high-performance thermal barrier coating (TBC) which may be susceptible to multiple failure modes. Specifically, ingestion of calcium–magnesium–alumino–silicate (CMAS) or volcanic ash (VA) at elevated temperatures induce accelerated deterioration of conventional yttria-stabilized zirconia (YSZ) TBCs. The ability to form an impervious and rapidly crystallizing rare earth-based apatite layer upon interaction with CMAS/VA salt favors the choice of rare earth zirconates (REZs) as novel TBCs. Among diverse REZs, Yb2Zr2O7 (YbZ) exhibits ideal TBC characteristics. A detailed insight into YbZ coating characteristics and performance is vitally needed to qualify these materials for TBC applications. Accordingly, in this study indigenously developed YbZ and commercial YSZ were deposited by air plasma spraying. Subsequently, the VA infiltration resistance of deposited coatings was comprehensively compared up to 1350 °C. The SEM analysis of VA-infiltrated YSZ and YbZ coatings revealed the thickness of the infiltration zone and the corresponding mechanism. YbZ coatings displayed significantly better VA infiltration resistance attributed to forming an impervious Yb-apatite-based arresting layer and pinning the further seepage of the VA salt front. Besides, VA rapidly infiltrated YSZ coatings, which failed to form an arresting layer. Overall, the study provides essential insights and thrust in developing next-generation TBCs.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.