{"title":"通过惩罚法数值近似求解模拟椭圆膜壳位移的障碍问题","authors":"Aaron Meixner, Paolo Piersanti","doi":"10.1007/s00245-024-10112-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we establish the convergence of a numerical scheme based, on the Finite Element Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane shell subjected to remaining confined in a half space. Instead of approximating the original variational inequalities governing this obstacle problem, we approximate the penalized version of the problem under consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to establish the convergence of the solution of the discrete penalized problem to the solution of the original variational inequalities. We also establish the convergence of the Brezis–Sibony scheme for the problem under consideration. Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without having to resort to nonlinear optimization tools. Finally, we present numerical simulations validating our new theoretical results.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Approximation of the Solution of an Obstacle Problem Modelling the Displacement of Elliptic Membrane Shells via the Penalty Method\",\"authors\":\"Aaron Meixner, Paolo Piersanti\",\"doi\":\"10.1007/s00245-024-10112-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we establish the convergence of a numerical scheme based, on the Finite Element Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane shell subjected to remaining confined in a half space. Instead of approximating the original variational inequalities governing this obstacle problem, we approximate the penalized version of the problem under consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to establish the convergence of the solution of the discrete penalized problem to the solution of the original variational inequalities. We also establish the convergence of the Brezis–Sibony scheme for the problem under consideration. Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without having to resort to nonlinear optimization tools. Finally, we present numerical simulations validating our new theoretical results.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10112-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10112-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical Approximation of the Solution of an Obstacle Problem Modelling the Displacement of Elliptic Membrane Shells via the Penalty Method
In this paper we establish the convergence of a numerical scheme based, on the Finite Element Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane shell subjected to remaining confined in a half space. Instead of approximating the original variational inequalities governing this obstacle problem, we approximate the penalized version of the problem under consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to establish the convergence of the solution of the discrete penalized problem to the solution of the original variational inequalities. We also establish the convergence of the Brezis–Sibony scheme for the problem under consideration. Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without having to resort to nonlinear optimization tools. Finally, we present numerical simulations validating our new theoretical results.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.