{"title":"BMSC 通过降低炎症水平抑制 ROS-NLRP3-IL-1β 信号轴,从而缓解干眼症。","authors":"Dandan Zhao, Hongxia Zhao, Yang He, Meixia Zhang","doi":"10.1080/02713683.2024.2324434","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Bone marrow mesenchymal stem cells (BMSC) have multiple biological functions and are widely involved in regulating inflammatory diseases, tissue repair and regeneration. However, the mechanism of their action in dry eye disease (DED) is currently unclear. The purpose of this study was to investigate the effect of BMSCs in the treatment of dry eye mice and to explore its specific therapeutic mechanism.</p><p><strong>Methods: </strong>Mouse corneal epithelial cells (MCECs) were treated with 500 mOsM sodium chloride hypertonic solution to induce a DED cell model. The dry eye animal model was constructed by adding 5 μL 0.2% benzalkonium chloride solution to mouse eyes. Western blotting was used to detect the expression of related proteins, and flow cytometry, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, hematoxylin-eosin (HE) staining, and periodic acid schiff (PAS) staining were used to detect cell and eye tissue damage.</p><p><strong>Results: </strong>The experimental results showed that BMSCs can reduce the levels of reactive oxygen species (ROS) and inflammatory factors in MCECs, promote cell proliferation, inhibit cell apoptosis, improve the integrity of the corneal epithelial layer <i>in vivo</i>, promote an increase in the number of goblet cells, and alleviate DED. Further exploration of the molecular mechanism of BMSCs treatment revealed that BMSCs alleviate the progression of DED by inhibiting the ROS-NLRP3-IL-1β signaling pathway.</p><p><strong>Conclusion: </strong>BMSCs inhibit ROS-NLRP3-IL-1β signaling axis, reducing inflammation levels and alleviating dry eye symptoms. These findings provide new ideas and a basis for the treatment of DED and provide an experimental basis for further research on the application value of BMSCs in alleviating DED.</p>","PeriodicalId":10782,"journal":{"name":"Current Eye Research","volume":" ","pages":"698-707"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMSC Alleviates Dry Eye by Inhibiting the ROS-NLRP3-IL-1β Signaling Axis by Reducing Inflammation Levels.\",\"authors\":\"Dandan Zhao, Hongxia Zhao, Yang He, Meixia Zhang\",\"doi\":\"10.1080/02713683.2024.2324434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Bone marrow mesenchymal stem cells (BMSC) have multiple biological functions and are widely involved in regulating inflammatory diseases, tissue repair and regeneration. However, the mechanism of their action in dry eye disease (DED) is currently unclear. The purpose of this study was to investigate the effect of BMSCs in the treatment of dry eye mice and to explore its specific therapeutic mechanism.</p><p><strong>Methods: </strong>Mouse corneal epithelial cells (MCECs) were treated with 500 mOsM sodium chloride hypertonic solution to induce a DED cell model. The dry eye animal model was constructed by adding 5 μL 0.2% benzalkonium chloride solution to mouse eyes. Western blotting was used to detect the expression of related proteins, and flow cytometry, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, hematoxylin-eosin (HE) staining, and periodic acid schiff (PAS) staining were used to detect cell and eye tissue damage.</p><p><strong>Results: </strong>The experimental results showed that BMSCs can reduce the levels of reactive oxygen species (ROS) and inflammatory factors in MCECs, promote cell proliferation, inhibit cell apoptosis, improve the integrity of the corneal epithelial layer <i>in vivo</i>, promote an increase in the number of goblet cells, and alleviate DED. Further exploration of the molecular mechanism of BMSCs treatment revealed that BMSCs alleviate the progression of DED by inhibiting the ROS-NLRP3-IL-1β signaling pathway.</p><p><strong>Conclusion: </strong>BMSCs inhibit ROS-NLRP3-IL-1β signaling axis, reducing inflammation levels and alleviating dry eye symptoms. These findings provide new ideas and a basis for the treatment of DED and provide an experimental basis for further research on the application value of BMSCs in alleviating DED.</p>\",\"PeriodicalId\":10782,\"journal\":{\"name\":\"Current Eye Research\",\"volume\":\" \",\"pages\":\"698-707\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02713683.2024.2324434\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2024.2324434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
BMSC Alleviates Dry Eye by Inhibiting the ROS-NLRP3-IL-1β Signaling Axis by Reducing Inflammation Levels.
Purpose: Bone marrow mesenchymal stem cells (BMSC) have multiple biological functions and are widely involved in regulating inflammatory diseases, tissue repair and regeneration. However, the mechanism of their action in dry eye disease (DED) is currently unclear. The purpose of this study was to investigate the effect of BMSCs in the treatment of dry eye mice and to explore its specific therapeutic mechanism.
Methods: Mouse corneal epithelial cells (MCECs) were treated with 500 mOsM sodium chloride hypertonic solution to induce a DED cell model. The dry eye animal model was constructed by adding 5 μL 0.2% benzalkonium chloride solution to mouse eyes. Western blotting was used to detect the expression of related proteins, and flow cytometry, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, hematoxylin-eosin (HE) staining, and periodic acid schiff (PAS) staining were used to detect cell and eye tissue damage.
Results: The experimental results showed that BMSCs can reduce the levels of reactive oxygen species (ROS) and inflammatory factors in MCECs, promote cell proliferation, inhibit cell apoptosis, improve the integrity of the corneal epithelial layer in vivo, promote an increase in the number of goblet cells, and alleviate DED. Further exploration of the molecular mechanism of BMSCs treatment revealed that BMSCs alleviate the progression of DED by inhibiting the ROS-NLRP3-IL-1β signaling pathway.
Conclusion: BMSCs inhibit ROS-NLRP3-IL-1β signaling axis, reducing inflammation levels and alleviating dry eye symptoms. These findings provide new ideas and a basis for the treatment of DED and provide an experimental basis for further research on the application value of BMSCs in alleviating DED.
期刊介绍:
The principal aim of Current Eye Research is to provide rapid publication of full papers, short communications and mini-reviews, all high quality. Current Eye Research publishes articles encompassing all the areas of eye research. Subject areas include the following: clinical research, anatomy, physiology, biophysics, biochemistry, pharmacology, developmental biology, microbiology and immunology.