Roukoz Abou-Karam, Fangzhou Cheng, Shoshana Gady, Akl C Fahed
{"title":"遗传学在推动心脏代谢药物开发中的作用。","authors":"Roukoz Abou-Karam, Fangzhou Cheng, Shoshana Gady, Akl C Fahed","doi":"10.1007/s11883-024-01195-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The objective of this review is to explore the role of genetics in cardiometabolic drug development. The declining costs of sequencing and the availability of large-scale genomic data have deepened our understanding of cardiometabolic diseases, revolutionizing drug discovery and development methodologies. We highlight four key areas in which genetics is empowering drug development for cardiometabolic disease: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials.</p><p><strong>Recent findings: </strong>Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments. In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.</p>","PeriodicalId":10875,"journal":{"name":"Current Atherosclerosis Reports","volume":" ","pages":"153-162"},"PeriodicalIF":5.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Genetics in Advancing Cardiometabolic Drug Development.\",\"authors\":\"Roukoz Abou-Karam, Fangzhou Cheng, Shoshana Gady, Akl C Fahed\",\"doi\":\"10.1007/s11883-024-01195-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The objective of this review is to explore the role of genetics in cardiometabolic drug development. The declining costs of sequencing and the availability of large-scale genomic data have deepened our understanding of cardiometabolic diseases, revolutionizing drug discovery and development methodologies. We highlight four key areas in which genetics is empowering drug development for cardiometabolic disease: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials.</p><p><strong>Recent findings: </strong>Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments. In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.</p>\",\"PeriodicalId\":10875,\"journal\":{\"name\":\"Current Atherosclerosis Reports\",\"volume\":\" \",\"pages\":\"153-162\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Atherosclerosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11883-024-01195-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Atherosclerosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11883-024-01195-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
The Role of Genetics in Advancing Cardiometabolic Drug Development.
Purpose of review: The objective of this review is to explore the role of genetics in cardiometabolic drug development. The declining costs of sequencing and the availability of large-scale genomic data have deepened our understanding of cardiometabolic diseases, revolutionizing drug discovery and development methodologies. We highlight four key areas in which genetics is empowering drug development for cardiometabolic disease: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials.
Recent findings: Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments. In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.
期刊介绍:
The aim of this journal is to systematically provide expert views on current basic science and clinical advances in the field of atherosclerosis and highlight the most important developments likely to transform the field of cardiovascular prevention, diagnosis, and treatment.
We accomplish this aim by appointing major authorities to serve as Section Editors who select leading experts from around the world to provide definitive reviews on key topics and papers published in the past year. We also provide supplementary reviews and commentaries from well-known figures in the field. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.