Jun Tan , Zhengjun Shi , Renjun Xue , Han Tan , Yujia Zhai , Shiguang Wu , Dong Ma , Dirui Wu , Haizheng Dang
{"title":"用于 10 兆瓦级 HTS 动态同步冷凝器的远程低温氦气循环冷却系统","authors":"Jun Tan , Zhengjun Shi , Renjun Xue , Han Tan , Yujia Zhai , Shiguang Wu , Dong Ma , Dirui Wu , Haizheng Dang","doi":"10.1016/j.cryogenics.2024.103822","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the remote cryogenic helium circulating system for cooling the 10-Mvar class HTS DSC. The cryogenic system is an upgraded version to provide a cooling power about 200 W@20 K. Six cryogenic cryocoolers are employed as the cold source. Two cryogenic helium blowers are used to overcome the pressure drop. Circulating loop is divided into two branches, of each three coolers are installed in parallel and then as a whole connected to a helium blower in series. The detailed design, structure parameters, and optimization of the cooling system were described as well. In the experimental tests coupled with the rotor section of 10-Mvar HTS DSC, the magnet was firstly pre-cooled to about 110 K with liquid nitrogen, and then further cooled to around 34.5 K by the circulating helium gas. In the near future, the 10-Mvar class HTS DSC will be installed, tested and integrated into the power grid for practical application.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote cryogenic helium gas circulating cooling system for a 10-Mvar class HTS dynamic synchronous condenser\",\"authors\":\"Jun Tan , Zhengjun Shi , Renjun Xue , Han Tan , Yujia Zhai , Shiguang Wu , Dong Ma , Dirui Wu , Haizheng Dang\",\"doi\":\"10.1016/j.cryogenics.2024.103822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper focuses on the remote cryogenic helium circulating system for cooling the 10-Mvar class HTS DSC. The cryogenic system is an upgraded version to provide a cooling power about 200 W@20 K. Six cryogenic cryocoolers are employed as the cold source. Two cryogenic helium blowers are used to overcome the pressure drop. Circulating loop is divided into two branches, of each three coolers are installed in parallel and then as a whole connected to a helium blower in series. The detailed design, structure parameters, and optimization of the cooling system were described as well. In the experimental tests coupled with the rotor section of 10-Mvar HTS DSC, the magnet was firstly pre-cooled to about 110 K with liquid nitrogen, and then further cooled to around 34.5 K by the circulating helium gas. In the near future, the 10-Mvar class HTS DSC will be installed, tested and integrated into the power grid for practical application.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524000420\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000420","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Remote cryogenic helium gas circulating cooling system for a 10-Mvar class HTS dynamic synchronous condenser
This paper focuses on the remote cryogenic helium circulating system for cooling the 10-Mvar class HTS DSC. The cryogenic system is an upgraded version to provide a cooling power about 200 W@20 K. Six cryogenic cryocoolers are employed as the cold source. Two cryogenic helium blowers are used to overcome the pressure drop. Circulating loop is divided into two branches, of each three coolers are installed in parallel and then as a whole connected to a helium blower in series. The detailed design, structure parameters, and optimization of the cooling system were described as well. In the experimental tests coupled with the rotor section of 10-Mvar HTS DSC, the magnet was firstly pre-cooled to about 110 K with liquid nitrogen, and then further cooled to around 34.5 K by the circulating helium gas. In the near future, the 10-Mvar class HTS DSC will be installed, tested and integrated into the power grid for practical application.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics