如何为运行 PEM 电解槽系统构建数字孪生系统 - 一种参考方法

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Annual Reviews in Control Pub Date : 2024-01-01 DOI:10.1016/j.arcontrol.2024.100943
Domenico Monopoli , Concetta Semeraro , Mohammad Ali Abdelkareem , Abdul Hai Alami , Abdul Ghani Olabi , Michele Dassisti
{"title":"如何为运行 PEM 电解槽系统构建数字孪生系统 - 一种参考方法","authors":"Domenico Monopoli ,&nbsp;Concetta Semeraro ,&nbsp;Mohammad Ali Abdelkareem ,&nbsp;Abdul Hai Alami ,&nbsp;Abdul Ghani Olabi ,&nbsp;Michele Dassisti","doi":"10.1016/j.arcontrol.2024.100943","DOIUrl":null,"url":null,"abstract":"<div><p>Operating electrolyzers for producing green hydrogen is a critical emerging issue because of either the broader use of hydrogen for several scopes or the short life span and efficiency of these components. Digital Twin offers a new opportunity to effectively face these problems by improving online control and providing fault detection, diagnosis, and prediction services. Since the Digital Twin is, in fact, a virtual mirror of a real system continuously updated by information received from the field, it allows it to swiftly react to small signals of departure from standard or optimal conditions. Although Digital Twins are widely applied in different fields, comprehensive guidance on developing and designing a Digital Twin in the literature is still lacking. This manuscript aims to provide a comprehensive guide on how to build the Digital Twin of a PEM-Electrolyzer. In particular, the architecture of the Digital Twin is initially presented, then all its components are analyzed, showing the steps to be performed to build a Digital Twin for operating PEM-Electrolyser system.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to build a Digital Twin for operating PEM-Electrolyser system – A reference approach\",\"authors\":\"Domenico Monopoli ,&nbsp;Concetta Semeraro ,&nbsp;Mohammad Ali Abdelkareem ,&nbsp;Abdul Hai Alami ,&nbsp;Abdul Ghani Olabi ,&nbsp;Michele Dassisti\",\"doi\":\"10.1016/j.arcontrol.2024.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Operating electrolyzers for producing green hydrogen is a critical emerging issue because of either the broader use of hydrogen for several scopes or the short life span and efficiency of these components. Digital Twin offers a new opportunity to effectively face these problems by improving online control and providing fault detection, diagnosis, and prediction services. Since the Digital Twin is, in fact, a virtual mirror of a real system continuously updated by information received from the field, it allows it to swiftly react to small signals of departure from standard or optimal conditions. Although Digital Twins are widely applied in different fields, comprehensive guidance on developing and designing a Digital Twin in the literature is still lacking. This manuscript aims to provide a comprehensive guide on how to build the Digital Twin of a PEM-Electrolyzer. In particular, the architecture of the Digital Twin is initially presented, then all its components are analyzed, showing the steps to be performed to build a Digital Twin for operating PEM-Electrolyser system.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578824000129\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578824000129","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

生产绿色氢气的电解槽的运行是一个新出现的重要问题,因为氢气的使用范围越来越广,或者这些组件的寿命和效率很短。数字孪生系统通过改进在线控制和提供故障检测、诊断和预测服务,为有效应对这些问题提供了新的机遇。由于数字孪生系统实际上是一个真实系统的虚拟镜像,不断根据从现场接收到的信息进行更新,因此能够对偏离标准或最佳条件的微小信号做出迅速反应。尽管数字孪生系统被广泛应用于不同领域,但文献中仍缺乏关于开发和设计数字孪生系统的全面指导。本手稿旨在就如何构建 PEM 电解槽数字孪生系统提供全面指导。具体而言,首先介绍了数字孪生系统的架构,然后分析了其所有组件,并展示了为运行 PEM 电解器系统而构建数字孪生系统所需的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How to build a Digital Twin for operating PEM-Electrolyser system – A reference approach

Operating electrolyzers for producing green hydrogen is a critical emerging issue because of either the broader use of hydrogen for several scopes or the short life span and efficiency of these components. Digital Twin offers a new opportunity to effectively face these problems by improving online control and providing fault detection, diagnosis, and prediction services. Since the Digital Twin is, in fact, a virtual mirror of a real system continuously updated by information received from the field, it allows it to swiftly react to small signals of departure from standard or optimal conditions. Although Digital Twins are widely applied in different fields, comprehensive guidance on developing and designing a Digital Twin in the literature is still lacking. This manuscript aims to provide a comprehensive guide on how to build the Digital Twin of a PEM-Electrolyzer. In particular, the architecture of the Digital Twin is initially presented, then all its components are analyzed, showing the steps to be performed to build a Digital Twin for operating PEM-Electrolyser system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
期刊最新文献
Editorial Board Analysis and design of model predictive control frameworks for dynamic operation—An overview Advances in controller design of pacemakers for pacing control: A comprehensive review Recent advances in path integral control for trajectory optimization: An overview in theoretical and algorithmic perspectives Analyzing stability in 2D systems via LMIs: From pioneering to recent contributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1