N 选一中不均匀和受阻场地布局的影响

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm Intelligence Pub Date : 2024-03-07 DOI:10.1007/s11721-024-00236-9
Jennifer Leaf, Julie A. Adams
{"title":"N 选一中不均匀和受阻场地布局的影响","authors":"Jennifer Leaf, Julie A. Adams","doi":"10.1007/s11721-024-00236-9","DOIUrl":null,"url":null,"abstract":"<p>Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as <i>resilience</i>. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between <i>absolute resilience</i> as measured against an objective standard, and <i>relative resilience</i> used to compare an algorithm’s performance across different operating conditions.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of uneven and obstructed site layouts in best-of-N\",\"authors\":\"Jennifer Leaf, Julie A. Adams\",\"doi\":\"10.1007/s11721-024-00236-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as <i>resilience</i>. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between <i>absolute resilience</i> as measured against an objective standard, and <i>relative resilience</i> used to compare an algorithm’s performance across different operating conditions.</p>\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-024-00236-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00236-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

受生物学启发的集体决策算法为机器人系统执行空间分布式搜索任务带来了希望。其中一个例子是 "N 选 1"(best-of-N)问题,在该问题中,一个集体必须在环境中搜索未知数量的地点,并选择最佳方案。现实世界中的机器人部署必须在各种环境条件下实现可接受的成功率和执行时间,这种特性被称为弹性。针对 "N 选 1 "问题的现有实验并未明确研究站点布局如何影响集体的性能和弹性。我们使用了两个新颖的弹性指标来比较均匀分布、有障碍或无障碍的不均匀站点配置之间的算法性能和弹性。阻碍价值最高的站点对两种算法的选择准确性都有负面影响,而站点分布不均对两种算法的复原力都没有影响。研究结果还揭示了根据客观标准衡量的绝对弹性与用于比较算法在不同操作条件下的性能的相对弹性之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of uneven and obstructed site layouts in best-of-N

Biologically inspired collective decision-making algorithms show promise for implementing spatially distributed searching tasks with robotic systems. One example is the best-of-N problem in which a collective must search an environment for an unknown number of sites and select the best option. Real-world robotic deployments must achieve acceptable success rates and execution times across a wide variety of environmental conditions, a property known as resilience. Existing experiments for the best-of-N problem have not explicitly examined how the site layout affects a collective’s performance and resilience. Two novel resilience metrics are used to compare algorithmic performance and resilience between evenly distributed, obstructed, or unobstructed uneven site configurations. Obstructing the highest valued site negatively affected selection accuracy for both algorithms, while uneven site distribution had no effect on either algorithm’s resilience. The results also illuminate the distinction between absolute resilience as measured against an objective standard, and relative resilience used to compare an algorithm’s performance across different operating conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm Intelligence
Swarm Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
CiteScore
5.70
自引率
11.50%
发文量
11
审稿时长
>12 weeks
期刊介绍: Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research and developments in the multidisciplinary field of swarm intelligence. The journal publishes original research articles and occasional review articles on theoretical, experimental and/or practical aspects of swarm intelligence. All articles are published both in print and in electronic form. There are no page charges for publication. Swarm Intelligence is published quarterly. The field of swarm intelligence deals with systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, it focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment. It is a fast-growing field that encompasses the efforts of researchers in multiple disciplines, ranging from ethology and social science to operations research and computer engineering. Swarm Intelligence will report on advances in the understanding and utilization of swarm intelligence systems, that is, systems that are based on the principles of swarm intelligence. The following subjects are of particular interest to the journal: • modeling and analysis of collective biological systems such as social insect colonies, flocking vertebrates, and human crowds as well as any other swarm intelligence systems; • application of biological swarm intelligence models to real-world problems such as distributed computing, data clustering, graph partitioning, optimization and decision making; • theoretical and empirical research in ant colony optimization, particle swarm optimization, swarm robotics, and other swarm intelligence algorithms.
期刊最新文献
Resilient swarm behaviors via online evolution and behavior fusion Decentralized traffic management of autonomous drones Non-uniform magnetic fields for collective behavior of self-assembled magnetic pillars The viability of domain constrained coalition formation for robotic collectives Imprecise evidence in social learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1