通过曲线迭代估算学习映射 用于实时水下图像增强

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-03-05 DOI:10.1364/oe.512397
Junting Wang, Xiufen Ye, Yusong Liu, Xinkui Mei, and Xing Wei
{"title":"通过曲线迭代估算学习映射 用于实时水下图像增强","authors":"Junting Wang, Xiufen Ye, Yusong Liu, Xinkui Mei, and Xing Wei","doi":"10.1364/oe.512397","DOIUrl":null,"url":null,"abstract":"The degradation and attenuation of light in underwater images impose constraints on underwater vision tasks. However, the complexity and the low real-time performance of most current image enhancement algorithms make them challenging in practical applications. To address the above issues, we propose a new lightweight framework for underwater image enhancement. We adopt the curve estimation to learn the mapping between images rather than end-to-end networks, which greatly reduces the requirement for computing resources. Firstly, a designed iterative curve with parameters is used to simulate the mapping from the raw to the enhanced image. Then, the parameters of this curve are learned with a parameter estimation network called CieNet and a set of loss functions. Experimental results demonstrate that our proposed method is superior to existing algorithms in terms of evaluating indexes and visual perception quality. Furthermore, our highly lightweight network enables it to be easily integrated into small devices, making it highly applicable. The extremely short running-time of our method facilitates real-time underwater image enhancement.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning mapping by curve iteration estimation For real-time underwater image enhancement\",\"authors\":\"Junting Wang, Xiufen Ye, Yusong Liu, Xinkui Mei, and Xing Wei\",\"doi\":\"10.1364/oe.512397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degradation and attenuation of light in underwater images impose constraints on underwater vision tasks. However, the complexity and the low real-time performance of most current image enhancement algorithms make them challenging in practical applications. To address the above issues, we propose a new lightweight framework for underwater image enhancement. We adopt the curve estimation to learn the mapping between images rather than end-to-end networks, which greatly reduces the requirement for computing resources. Firstly, a designed iterative curve with parameters is used to simulate the mapping from the raw to the enhanced image. Then, the parameters of this curve are learned with a parameter estimation network called CieNet and a set of loss functions. Experimental results demonstrate that our proposed method is superior to existing algorithms in terms of evaluating indexes and visual perception quality. Furthermore, our highly lightweight network enables it to be easily integrated into small devices, making it highly applicable. The extremely short running-time of our method facilitates real-time underwater image enhancement.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/oe.512397\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/oe.512397","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

水下图像中光的衰减和衰减对水下视觉任务造成了限制。然而,目前大多数图像增强算法的复杂性和低实时性使其在实际应用中面临挑战。针对上述问题,我们提出了一种新的轻量级水下图像增强框架。我们采用曲线估计来学习图像之间的映射,而不是端到端网络,这大大降低了对计算资源的要求。首先,设计一条带参数的迭代曲线来模拟从原始图像到增强图像的映射。然后,利用名为 CieNet 的参数估计网络和一组损失函数来学习该曲线的参数。实验结果表明,我们提出的方法在评估指标和视觉感知质量方面优于现有算法。此外,我们的网络非常轻便,可以轻松集成到小型设备中,因此非常适用。我们的方法运行时间极短,有利于实时水下图像增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning mapping by curve iteration estimation For real-time underwater image enhancement
The degradation and attenuation of light in underwater images impose constraints on underwater vision tasks. However, the complexity and the low real-time performance of most current image enhancement algorithms make them challenging in practical applications. To address the above issues, we propose a new lightweight framework for underwater image enhancement. We adopt the curve estimation to learn the mapping between images rather than end-to-end networks, which greatly reduces the requirement for computing resources. Firstly, a designed iterative curve with parameters is used to simulate the mapping from the raw to the enhanced image. Then, the parameters of this curve are learned with a parameter estimation network called CieNet and a set of loss functions. Experimental results demonstrate that our proposed method is superior to existing algorithms in terms of evaluating indexes and visual perception quality. Furthermore, our highly lightweight network enables it to be easily integrated into small devices, making it highly applicable. The extremely short running-time of our method facilitates real-time underwater image enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1