特征工程对车载 ad-hoc 网络中位置伪造攻击检测的影响

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Security Pub Date : 2024-03-07 DOI:10.1007/s10207-024-00830-2
Eslam Abdelkreem, Sherif Hussein, Ashraf Tammam
{"title":"特征工程对车载 ad-hoc 网络中位置伪造攻击检测的影响","authors":"Eslam Abdelkreem, Sherif Hussein, Ashraf Tammam","doi":"10.1007/s10207-024-00830-2","DOIUrl":null,"url":null,"abstract":"<p>The vehicular ad-hoc network is a technology that enables vehicles to interact with each other and the surrounding infrastructure, aiming to enhance road safety and driver comfort. However, it is susceptible to various security attacks. Among these attacks, the position falsification attack is regarded as one of the most serious, in which the malicious nodes tamper with their transmitted location. Thus, developing effective misbehavior detection schemes capable of detecting such attacks is crucial. Many of these schemes employ machine learning techniques to detect misbehavior based on the features of the exchanged messages. However, the studies that identify the impact of feature engineering on schemes’ performance and highlight the most efficient features and algorithms are limited. This paper conducts a comprehensive literature survey to identify the key features and algorithms used in the literature that lead to the best-performing models. Then, a comparative study using the VeReMi dataset, which is publicly available, is performed to assess six models implemented using three different machine learning algorithms and two feature sets: one comprising selected and derived features and the other including all message features. The findings show that two of the suggested models that employ feature engineering perform almost equally to existing studies in identifying two types of position falsification attacks while exhibiting performance improvements in detecting other types. Furthermore, the results of evaluating the proposed models using another simulation exhibit a substantial improvement achieved by employing feature engineering techniques, where the average accuracy of the models is increased by 6.31–47%, depending on the algorithm used.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature engineering impact on position falsification attacks detection in vehicular ad-hoc network\",\"authors\":\"Eslam Abdelkreem, Sherif Hussein, Ashraf Tammam\",\"doi\":\"10.1007/s10207-024-00830-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vehicular ad-hoc network is a technology that enables vehicles to interact with each other and the surrounding infrastructure, aiming to enhance road safety and driver comfort. However, it is susceptible to various security attacks. Among these attacks, the position falsification attack is regarded as one of the most serious, in which the malicious nodes tamper with their transmitted location. Thus, developing effective misbehavior detection schemes capable of detecting such attacks is crucial. Many of these schemes employ machine learning techniques to detect misbehavior based on the features of the exchanged messages. However, the studies that identify the impact of feature engineering on schemes’ performance and highlight the most efficient features and algorithms are limited. This paper conducts a comprehensive literature survey to identify the key features and algorithms used in the literature that lead to the best-performing models. Then, a comparative study using the VeReMi dataset, which is publicly available, is performed to assess six models implemented using three different machine learning algorithms and two feature sets: one comprising selected and derived features and the other including all message features. The findings show that two of the suggested models that employ feature engineering perform almost equally to existing studies in identifying two types of position falsification attacks while exhibiting performance improvements in detecting other types. Furthermore, the results of evaluating the proposed models using another simulation exhibit a substantial improvement achieved by employing feature engineering techniques, where the average accuracy of the models is increased by 6.31–47%, depending on the algorithm used.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00830-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00830-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

车载 ad-hoc 网络是一种使车辆之间以及车辆与周围基础设施之间进行交互的技术,旨在提高道路安全性和驾驶舒适性。然而,它容易受到各种安全攻击。在这些攻击中,位置伪造攻击被认为是最严重的攻击之一,在这种攻击中,恶意节点会篡改其传输的位置。因此,开发能够检测此类攻击的有效不当行为检测方案至关重要。其中许多方案都采用了机器学习技术,根据交换信息的特征来检测不当行为。然而,能确定特征工程对方案性能的影响并强调最有效特征和算法的研究非常有限。本文进行了全面的文献调查,以确定文献中使用的导致最佳性能模型的关键特征和算法。然后,使用公开的 VeReMi 数据集进行了一项比较研究,评估了使用三种不同的机器学习算法和两个特征集实现的六个模型:一个特征集包括选定和衍生特征,另一个特征集包括所有信息特征。研究结果表明,在识别两种类型的位置伪造攻击方面,采用特征工程的两个建议模型的表现与现有研究几乎相同,而在检测其他类型的位置伪造攻击方面则表现出更高的性能。此外,使用另一种模拟方法对所建议的模型进行评估的结果表明,采用特征工程技术后,模型的平均准确率提高了 6.31-47%,具体取决于所使用的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature engineering impact on position falsification attacks detection in vehicular ad-hoc network

The vehicular ad-hoc network is a technology that enables vehicles to interact with each other and the surrounding infrastructure, aiming to enhance road safety and driver comfort. However, it is susceptible to various security attacks. Among these attacks, the position falsification attack is regarded as one of the most serious, in which the malicious nodes tamper with their transmitted location. Thus, developing effective misbehavior detection schemes capable of detecting such attacks is crucial. Many of these schemes employ machine learning techniques to detect misbehavior based on the features of the exchanged messages. However, the studies that identify the impact of feature engineering on schemes’ performance and highlight the most efficient features and algorithms are limited. This paper conducts a comprehensive literature survey to identify the key features and algorithms used in the literature that lead to the best-performing models. Then, a comparative study using the VeReMi dataset, which is publicly available, is performed to assess six models implemented using three different machine learning algorithms and two feature sets: one comprising selected and derived features and the other including all message features. The findings show that two of the suggested models that employ feature engineering perform almost equally to existing studies in identifying two types of position falsification attacks while exhibiting performance improvements in detecting other types. Furthermore, the results of evaluating the proposed models using another simulation exhibit a substantial improvement achieved by employing feature engineering techniques, where the average accuracy of the models is increased by 6.31–47%, depending on the algorithm used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Security
International Journal of Information Security 工程技术-计算机:理论方法
CiteScore
6.30
自引率
3.10%
发文量
52
审稿时长
12 months
期刊介绍: The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation. Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.
期刊最新文献
“Animation” URL in NFT marketplaces considered harmful for privacy An overview of proposals towards the privacy-preserving publication of trajectory data Enhancing privacy protections in national identification systems: an examination of stakeholders’ knowledge, attitudes, and practices of privacy by design An enhanced and verifiable lightweight authentication protocol for securing the Internet of Medical Things (IoMT) based on CP-ABE encryption Secure multi-party computation with legally-enforceable fairness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1