{"title":"龙虾眼天文成像仪的地面校准结果","authors":"Huaqing Cheng, Zhixing Ling, Chen Zhang, Xiaojin Sun, Shengli Sun, Yuan Liu, Yanfeng Dai, Zhenqing Jia, Haiwu Pan, Wenxin Wang, Donghua Zhao, Yifan Chen, Zhiwei Cheng, Wei Fu, Yixiao Han, Junfei Li, Zhengda Li, Xiaohao Ma, Yulong Xue, Ailiang Yan, Qiang Zhang, Yusa Wang, Xiongtao Yang, Zijian Zhao, Weimin Yuan","doi":"10.1007/s10686-024-09932-0","DOIUrl":null,"url":null,"abstract":"<div><p>We report on results of the on-ground X-ray calibration of the Lobster Eye Imager for Astronomy (LEIA), an experimental space wide-field (18.6 <span>\\(\\times \\)</span> 18.6 square degrees) X-ray telescope built from novel lobster eye micro-pore optics. LEIA was successfully launched on July 27, 2022 onboard the SATech-01 satellite. To achieve full characterisation of its performance before launch, a series of tests and calibrations have been carried out at different levels of devices, assemblies and the complete module. In this paper, we present the results of the end-to-end calibration campaign of the complete module carried out at the 100-m X-ray Test Facility at the Institute of High-energy Physics, Chinese Academy of Sciences (CAS). The Point Spread Function (PSF), effective area and energy response of the detectors were measured in a wide range of incident directions at several characteristic X-ray line energies. Specifically, the distributions of the PSF and effective areas are roughly uniform across the FoV, in large agreement with the prediction of lobster-eye optics. The mild variations and deviations from the prediction of idealized, perfect lobster-eye optics can be understood to be caused by the imperfect shapes and alignment of the micro-pores as well as the obscuration of incident photons by the supporting frames, which can be well reproduced by Monte Carlo simulations. The spatial resolution of LEIA defined by the full width at half maximum (FWHM) of the focal spot ranges from <span>\\(\\textbf{4}\\)</span> to <span>\\(\\textbf{8}\\)</span> arc minutes with a median of <span>\\(\\mathbf{5.7}\\)</span> arcmin. The measured effective areas are in range of <span>\\(\\mathbf{2-3}~\\mathbf {cm^2}\\)</span> at <span>\\(\\mathbf{\\sim }\\)</span>1.25 keV across the entire FoV, and its dependence on photon energy is also in large agreement with simulations. The gains of the four complementary metal-oxide semiconductor (CMOS) sensors are in range of <span>\\(\\mathbf{6.5-6.9}~\\mathbf {eV/DN}\\)</span>, and the energy resolutions in the range of <span>\\(\\mathbf{\\sim 120 - 140}\\)</span> eV at <span>\\(\\mathbf{1.25}\\)</span> keV and <span>\\(\\mathbf{\\sim 170-190}\\)</span> eV at <span>\\(\\mathbf{4.5}\\)</span> keV. These calibration results have been ingested into the first version of calibration database (CALDB) and applied to the analysis of the scientific data acquired by LEIA. This work paves the way for the calibration of the Wide-field X-Ray Telescope (WXT) flight model modules of the Einstein Probe (EP) mission.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground calibration result of the Lobster Eye Imager for Astronomy\",\"authors\":\"Huaqing Cheng, Zhixing Ling, Chen Zhang, Xiaojin Sun, Shengli Sun, Yuan Liu, Yanfeng Dai, Zhenqing Jia, Haiwu Pan, Wenxin Wang, Donghua Zhao, Yifan Chen, Zhiwei Cheng, Wei Fu, Yixiao Han, Junfei Li, Zhengda Li, Xiaohao Ma, Yulong Xue, Ailiang Yan, Qiang Zhang, Yusa Wang, Xiongtao Yang, Zijian Zhao, Weimin Yuan\",\"doi\":\"10.1007/s10686-024-09932-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report on results of the on-ground X-ray calibration of the Lobster Eye Imager for Astronomy (LEIA), an experimental space wide-field (18.6 <span>\\\\(\\\\times \\\\)</span> 18.6 square degrees) X-ray telescope built from novel lobster eye micro-pore optics. LEIA was successfully launched on July 27, 2022 onboard the SATech-01 satellite. To achieve full characterisation of its performance before launch, a series of tests and calibrations have been carried out at different levels of devices, assemblies and the complete module. In this paper, we present the results of the end-to-end calibration campaign of the complete module carried out at the 100-m X-ray Test Facility at the Institute of High-energy Physics, Chinese Academy of Sciences (CAS). The Point Spread Function (PSF), effective area and energy response of the detectors were measured in a wide range of incident directions at several characteristic X-ray line energies. Specifically, the distributions of the PSF and effective areas are roughly uniform across the FoV, in large agreement with the prediction of lobster-eye optics. The mild variations and deviations from the prediction of idealized, perfect lobster-eye optics can be understood to be caused by the imperfect shapes and alignment of the micro-pores as well as the obscuration of incident photons by the supporting frames, which can be well reproduced by Monte Carlo simulations. The spatial resolution of LEIA defined by the full width at half maximum (FWHM) of the focal spot ranges from <span>\\\\(\\\\textbf{4}\\\\)</span> to <span>\\\\(\\\\textbf{8}\\\\)</span> arc minutes with a median of <span>\\\\(\\\\mathbf{5.7}\\\\)</span> arcmin. The measured effective areas are in range of <span>\\\\(\\\\mathbf{2-3}~\\\\mathbf {cm^2}\\\\)</span> at <span>\\\\(\\\\mathbf{\\\\sim }\\\\)</span>1.25 keV across the entire FoV, and its dependence on photon energy is also in large agreement with simulations. The gains of the four complementary metal-oxide semiconductor (CMOS) sensors are in range of <span>\\\\(\\\\mathbf{6.5-6.9}~\\\\mathbf {eV/DN}\\\\)</span>, and the energy resolutions in the range of <span>\\\\(\\\\mathbf{\\\\sim 120 - 140}\\\\)</span> eV at <span>\\\\(\\\\mathbf{1.25}\\\\)</span> keV and <span>\\\\(\\\\mathbf{\\\\sim 170-190}\\\\)</span> eV at <span>\\\\(\\\\mathbf{4.5}\\\\)</span> keV. These calibration results have been ingested into the first version of calibration database (CALDB) and applied to the analysis of the scientific data acquired by LEIA. This work paves the way for the calibration of the Wide-field X-Ray Telescope (WXT) flight model modules of the Einstein Probe (EP) mission.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"57 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-024-09932-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09932-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Ground calibration result of the Lobster Eye Imager for Astronomy
We report on results of the on-ground X-ray calibration of the Lobster Eye Imager for Astronomy (LEIA), an experimental space wide-field (18.6 \(\times \) 18.6 square degrees) X-ray telescope built from novel lobster eye micro-pore optics. LEIA was successfully launched on July 27, 2022 onboard the SATech-01 satellite. To achieve full characterisation of its performance before launch, a series of tests and calibrations have been carried out at different levels of devices, assemblies and the complete module. In this paper, we present the results of the end-to-end calibration campaign of the complete module carried out at the 100-m X-ray Test Facility at the Institute of High-energy Physics, Chinese Academy of Sciences (CAS). The Point Spread Function (PSF), effective area and energy response of the detectors were measured in a wide range of incident directions at several characteristic X-ray line energies. Specifically, the distributions of the PSF and effective areas are roughly uniform across the FoV, in large agreement with the prediction of lobster-eye optics. The mild variations and deviations from the prediction of idealized, perfect lobster-eye optics can be understood to be caused by the imperfect shapes and alignment of the micro-pores as well as the obscuration of incident photons by the supporting frames, which can be well reproduced by Monte Carlo simulations. The spatial resolution of LEIA defined by the full width at half maximum (FWHM) of the focal spot ranges from \(\textbf{4}\) to \(\textbf{8}\) arc minutes with a median of \(\mathbf{5.7}\) arcmin. The measured effective areas are in range of \(\mathbf{2-3}~\mathbf {cm^2}\) at \(\mathbf{\sim }\)1.25 keV across the entire FoV, and its dependence on photon energy is also in large agreement with simulations. The gains of the four complementary metal-oxide semiconductor (CMOS) sensors are in range of \(\mathbf{6.5-6.9}~\mathbf {eV/DN}\), and the energy resolutions in the range of \(\mathbf{\sim 120 - 140}\) eV at \(\mathbf{1.25}\) keV and \(\mathbf{\sim 170-190}\) eV at \(\mathbf{4.5}\) keV. These calibration results have been ingested into the first version of calibration database (CALDB) and applied to the analysis of the scientific data acquired by LEIA. This work paves the way for the calibration of the Wide-field X-Ray Telescope (WXT) flight model modules of the Einstein Probe (EP) mission.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.