通过贝叶斯视角对足球比赛进行实时预测

Chinmay Divekar, Soudeep Deb, Rishideep Roy
{"title":"通过贝叶斯视角对足球比赛进行实时预测","authors":"Chinmay Divekar, Soudeep Deb, Rishideep Roy","doi":"10.1093/jrsssa/qnad136","DOIUrl":null,"url":null,"abstract":"<jats:title>Abstract</jats:title> This article employs a Bayesian methodology to predict the results of soccer matches in real-time. Using sequential data of various events throughout the match, we utilise a multinomial probit regression in a novel framework to estimate the time-varying impact of covariates and to forecast the outcome. English Premier League data from eight seasons are used to evaluate the efficacy of our method. Different evaluation metrics establish that the proposed model outperforms potential competitors inspired by existing statistical or machine learning algorithms. Additionally, we apply robustness checks to demonstrate the model’s accuracy across various scenarios.","PeriodicalId":517419,"journal":{"name":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time forecasting within soccer matches through a Bayesian lens\",\"authors\":\"Chinmay Divekar, Soudeep Deb, Rishideep Roy\",\"doi\":\"10.1093/jrsssa/qnad136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:title>Abstract</jats:title> This article employs a Bayesian methodology to predict the results of soccer matches in real-time. Using sequential data of various events throughout the match, we utilise a multinomial probit regression in a novel framework to estimate the time-varying impact of covariates and to forecast the outcome. English Premier League data from eight seasons are used to evaluate the efficacy of our method. Different evaluation metrics establish that the proposed model outperforms potential competitors inspired by existing statistical or machine learning algorithms. Additionally, we apply robustness checks to demonstrate the model’s accuracy across various scenarios.\",\"PeriodicalId\":517419,\"journal\":{\"name\":\"The Journal of the Royal Statistical Society, Series A (Statistics in Society)\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Royal Statistical Society, Series A (Statistics in Society)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnad136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Royal Statistical Society, Series A (Statistics in Society)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文采用贝叶斯方法实时预测足球比赛的结果。利用整场比赛中各种事件的序列数据,我们在一个新颖的框架中利用多叉概率回归来估计协变量的时变影响并预测比赛结果。英格兰足球超级联赛八个赛季的数据被用来评估我们方法的有效性。不同的评估指标表明,所提出的模型优于受现有统计或机器学习算法启发的潜在竞争对手。此外,我们还进行了稳健性检查,以证明模型在各种情况下的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time forecasting within soccer matches through a Bayesian lens
Abstract This article employs a Bayesian methodology to predict the results of soccer matches in real-time. Using sequential data of various events throughout the match, we utilise a multinomial probit regression in a novel framework to estimate the time-varying impact of covariates and to forecast the outcome. English Premier League data from eight seasons are used to evaluate the efficacy of our method. Different evaluation metrics establish that the proposed model outperforms potential competitors inspired by existing statistical or machine learning algorithms. Additionally, we apply robustness checks to demonstrate the model’s accuracy across various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On partial likelihood Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys Relaxing the exclusion restriction in shift-share instrumental variable estimation Grace periods in comparative effectiveness studies of sustained treatments Statistics did not prove that the Huanan Seafood Wholesale Market was the early epicentre of the COVID-19 pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1