{"title":"应用 P(III)-Nucleophiles 通过 Michaelis-Arbuzov 型重排生成新 P-C 键的最新进展。","authors":"Biquan Xiong, Minjing Yuan, Chonghao Shi, Longzhi Zhu, Fan Cao, Weifeng Xu, Yining Ren, Yu Liu, Ke-Wen Tang","doi":"10.1007/s41061-024-00456-x","DOIUrl":null,"url":null,"abstract":"<div><p>Organophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P−C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P−H bonds and P−OH bonds. Activation can occur through photocatalytic, electrocatalytic, or thermo-driven reactions, often in coordination with a Michaelis–Arbuzov-trpe rearrangement process, to produce the desired products. As such, this review offers a thorough overview of the phosphorylated transformation and potential mechanisms of P(III)-nucleophiles, specifically focusing on developments since 2010. Notably, this review may provide researchers with valuable insights into designing and synthesizing functionalized organophosphorus compounds from P(III)-nucleophiles, guiding future advancements in both research and practical applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Application of P(III)-Nucleophiles to Create New P−C Bonds through Michaelis–Arbuzov-Type Rearrangement\",\"authors\":\"Biquan Xiong, Minjing Yuan, Chonghao Shi, Longzhi Zhu, Fan Cao, Weifeng Xu, Yining Ren, Yu Liu, Ke-Wen Tang\",\"doi\":\"10.1007/s41061-024-00456-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P−C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P−H bonds and P−OH bonds. Activation can occur through photocatalytic, electrocatalytic, or thermo-driven reactions, often in coordination with a Michaelis–Arbuzov-trpe rearrangement process, to produce the desired products. As such, this review offers a thorough overview of the phosphorylated transformation and potential mechanisms of P(III)-nucleophiles, specifically focusing on developments since 2010. Notably, this review may provide researchers with valuable insights into designing and synthesizing functionalized organophosphorus compounds from P(III)-nucleophiles, guiding future advancements in both research and practical applications.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"382 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-024-00456-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-024-00456-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Recent Advances in the Application of P(III)-Nucleophiles to Create New P−C Bonds through Michaelis–Arbuzov-Type Rearrangement
Organophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P−C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P−H bonds and P−OH bonds. Activation can occur through photocatalytic, electrocatalytic, or thermo-driven reactions, often in coordination with a Michaelis–Arbuzov-trpe rearrangement process, to produce the desired products. As such, this review offers a thorough overview of the phosphorylated transformation and potential mechanisms of P(III)-nucleophiles, specifically focusing on developments since 2010. Notably, this review may provide researchers with valuable insights into designing and synthesizing functionalized organophosphorus compounds from P(III)-nucleophiles, guiding future advancements in both research and practical applications.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.