Aleksandra Siwiec, Katarzyna Dusilo, Monika Asztemborska, Marcin Opallo
{"title":"植物油水界面的电催化","authors":"Aleksandra Siwiec, Katarzyna Dusilo, Monika Asztemborska, Marcin Opallo","doi":"10.1016/j.elecom.2024.107694","DOIUrl":null,"url":null,"abstract":"<div><p>Biphasic oxygen reduction and hydrogen evolution are studied for almost two decades, because of favourable overpotential decrease as compared to aqueous solution. Until now, polar solvents (ε > 7) were employed as organic phase in these studies. Here, we applied non polar vegetable oils (rapeseed, linen or sunflower) for biphasic H<sub>2</sub>O<sub>2</sub> generation by oxygen reduction. This product was detected at oil|aqueous acid solution interface by scanning electrochemical microscopy, when electron donor – decamethylferrocene, was electrochemically recycled. Ejection of small fraction of decamethylferrocenium cation from oil to aqueous phase was also noticed.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"161 ","pages":"Article 107694"},"PeriodicalIF":4.7000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000377/pdfft?md5=14dc78d9d48eddcfc17ccc5b9939201f&pid=1-s2.0-S1388248124000377-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrocatalysis at vegetable oil water interface\",\"authors\":\"Aleksandra Siwiec, Katarzyna Dusilo, Monika Asztemborska, Marcin Opallo\",\"doi\":\"10.1016/j.elecom.2024.107694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biphasic oxygen reduction and hydrogen evolution are studied for almost two decades, because of favourable overpotential decrease as compared to aqueous solution. Until now, polar solvents (ε > 7) were employed as organic phase in these studies. Here, we applied non polar vegetable oils (rapeseed, linen or sunflower) for biphasic H<sub>2</sub>O<sub>2</sub> generation by oxygen reduction. This product was detected at oil|aqueous acid solution interface by scanning electrochemical microscopy, when electron donor – decamethylferrocene, was electrochemically recycled. Ejection of small fraction of decamethylferrocenium cation from oil to aqueous phase was also noticed.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"161 \",\"pages\":\"Article 107694\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000377/pdfft?md5=14dc78d9d48eddcfc17ccc5b9939201f&pid=1-s2.0-S1388248124000377-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000377\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000377","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Biphasic oxygen reduction and hydrogen evolution are studied for almost two decades, because of favourable overpotential decrease as compared to aqueous solution. Until now, polar solvents (ε > 7) were employed as organic phase in these studies. Here, we applied non polar vegetable oils (rapeseed, linen or sunflower) for biphasic H2O2 generation by oxygen reduction. This product was detected at oil|aqueous acid solution interface by scanning electrochemical microscopy, when electron donor – decamethylferrocene, was electrochemically recycled. Ejection of small fraction of decamethylferrocenium cation from oil to aqueous phase was also noticed.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.