高级氧化染料废水联合处理厂:利用数据驱动的性能预测模型进行设计和开发

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-03-08 DOI:10.1038/s41545-024-00308-7
Pankaj Singh Chauhan, Kirtiman Singh, Aditya Choudhary, Urmila Brighu, S. K. Singh, Shantanu Bhattacharya
{"title":"高级氧化染料废水联合处理厂:利用数据驱动的性能预测模型进行设计和开发","authors":"Pankaj Singh Chauhan, Kirtiman Singh, Aditya Choudhary, Urmila Brighu, S. K. Singh, Shantanu Bhattacharya","doi":"10.1038/s41545-024-00308-7","DOIUrl":null,"url":null,"abstract":"The recalcitrant nature of the industrial dyes poses a significant challenge to existing treatment technologies due to the stringent environmental regulations. This combined with the inefficiency of a single treatment method has led to the implementation of the combination of primary, secondary, and tertiary treatment processes, which fails during complex secondary aeration processes due to variable pH loads of industrial effluent wastewater. This article presents a modified design methodology of a pilot-scale micro-pre-treatment unit using a solar-triggered advanced oxidation process reactor that both effectively controls the influent variability at the source and mitigates textile effluents for making the discharge reusable for different industrial purposes. The proposed modified combination technique of controlled serial processes inclusive of primary, secondary, and tertiary treatment steps with ZnO/ZnO-GO NanoMat-based advanced oxidation process demonstrates complete remediation of industrial grade effluent with effective reuse of the discharge. Further, a reliable prediction model for estimating water quality parameter using machine learning models are proposed. Multi-linear regression and Artificial Neural network modeling provide simple, accurate, and robust prediction capabilities, which are evaluated for the efficiency of the processes. The generated prediction models capture the output parameters within an acceptable level of accuracy $$({{\\boldsymbol{R}}}_{{adj}}^{{\\bf{2}}}\\, >\\, 0.90)$$ and allow compliance with the discharge Inland Water Discharge Standards (IWDS).","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00308-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Combined advanced oxidation dye-wastewater treatment plant: design and development with data-driven predictive performance modeling\",\"authors\":\"Pankaj Singh Chauhan, Kirtiman Singh, Aditya Choudhary, Urmila Brighu, S. K. Singh, Shantanu Bhattacharya\",\"doi\":\"10.1038/s41545-024-00308-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recalcitrant nature of the industrial dyes poses a significant challenge to existing treatment technologies due to the stringent environmental regulations. This combined with the inefficiency of a single treatment method has led to the implementation of the combination of primary, secondary, and tertiary treatment processes, which fails during complex secondary aeration processes due to variable pH loads of industrial effluent wastewater. This article presents a modified design methodology of a pilot-scale micro-pre-treatment unit using a solar-triggered advanced oxidation process reactor that both effectively controls the influent variability at the source and mitigates textile effluents for making the discharge reusable for different industrial purposes. The proposed modified combination technique of controlled serial processes inclusive of primary, secondary, and tertiary treatment steps with ZnO/ZnO-GO NanoMat-based advanced oxidation process demonstrates complete remediation of industrial grade effluent with effective reuse of the discharge. Further, a reliable prediction model for estimating water quality parameter using machine learning models are proposed. Multi-linear regression and Artificial Neural network modeling provide simple, accurate, and robust prediction capabilities, which are evaluated for the efficiency of the processes. The generated prediction models capture the output parameters within an acceptable level of accuracy $$({{\\\\boldsymbol{R}}}_{{adj}}^{{\\\\bf{2}}}\\\\, >\\\\, 0.90)$$ and allow compliance with the discharge Inland Water Discharge Standards (IWDS).\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00308-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00308-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00308-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于严格的环境法规,工业染料的难降解特性给现有的处理技术带来了巨大挑战。再加上单一处理方法的低效率,导致了一级、二级和三级处理工艺的组合实施,但由于工业污水废水的 pH 负荷不稳定,在复杂的二级曝气过程中会出现故障。本文介绍了使用太阳能触发的高级氧化工艺反应器的中试规模微型预处理装置的改进设计方法,该方法既能从源头上有效控制进水的变化,又能减轻纺织污水的影响,使排放物可重新用于不同的工业用途。所提出的修改后的受控串行工艺组合技术包括一级、二级和三级处理步骤,以及基于 ZnO/ZnO-GO NanoMat 的高级氧化工艺,该技术可完全修复工业级污水,并有效再利用排放物。此外,还提出了一种利用机器学习模型估算水质参数的可靠预测模型。多线性回归和人工神经网络建模提供了简单、准确和稳健的预测能力,并对工艺的效率进行了评估。生成的预测模型可在可接受的精度范围内捕获输出参数 $$({{\boldsymbol{R}}}_{{adj}}^{{\bf{2}}}\, >\, 0.90)$$,并符合内陆水排放标准(IWDS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined advanced oxidation dye-wastewater treatment plant: design and development with data-driven predictive performance modeling
The recalcitrant nature of the industrial dyes poses a significant challenge to existing treatment technologies due to the stringent environmental regulations. This combined with the inefficiency of a single treatment method has led to the implementation of the combination of primary, secondary, and tertiary treatment processes, which fails during complex secondary aeration processes due to variable pH loads of industrial effluent wastewater. This article presents a modified design methodology of a pilot-scale micro-pre-treatment unit using a solar-triggered advanced oxidation process reactor that both effectively controls the influent variability at the source and mitigates textile effluents for making the discharge reusable for different industrial purposes. The proposed modified combination technique of controlled serial processes inclusive of primary, secondary, and tertiary treatment steps with ZnO/ZnO-GO NanoMat-based advanced oxidation process demonstrates complete remediation of industrial grade effluent with effective reuse of the discharge. Further, a reliable prediction model for estimating water quality parameter using machine learning models are proposed. Multi-linear regression and Artificial Neural network modeling provide simple, accurate, and robust prediction capabilities, which are evaluated for the efficiency of the processes. The generated prediction models capture the output parameters within an acceptable level of accuracy $$({{\boldsymbol{R}}}_{{adj}}^{{\bf{2}}}\, >\, 0.90)$$ and allow compliance with the discharge Inland Water Discharge Standards (IWDS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Optimization of valve switch control for contamination detection in water distribution network Turning mine-tailing streams into sources of water and mineral salts in a membrane-sustained circular scenario Bacterial cellulose-graphene oxide composite membranes with enhanced fouling resistance for bio-effluents management Training caretakers to clean community wells is a highly cost-effective way to reduce exposure to coliform bacteria Uncovering pathway and mechanism of simultaneous thiocyanate detoxicity and nitrate removal through anammox and denitrification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1