{"title":"谷氨酰胺通过调节脂肪分解和氧化应激防止高脂饮食引起的小鼠肝脏脂质积累","authors":"Yongjie Zhang, Yangli Wang, Xin Liao, Tong Liu, Fengyuan Yang, Kaiqiang Yang, Zhuohua Zhou, Yinxu Fu, Ting Fu, Aliaksei Sysa, Xiandan Chen, Yao Shen, Jianxin Lyu, Qiongya Zhao","doi":"10.1186/s12986-024-00784-1","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic-associated fatty liver disease (MAFLD) is related to metabolic dysfunction and is characterized by excess fat storage in the liver. Several studies have indicated that glutamine could be closely associated with lipid metabolism disturbances because of its important role in intermediary metabolism. However, the effect of glutamine supplementation on MAFLD progression remains unclear. Here, we used a high-fat diet (HFD)-induced MAFLD C57BL/6 mouse model, and glutamine was supplied in the drinking water at different time points for MAFLD prevention and reversal studies. A MAFLD prevention study was performed by feeding mice an HFD concomitant with 4% glutamine treatment for 24 weeks, whereas the MAFLD reversal study was performed based on 4% glutamine treatment for 13 weeks after feeding mice an HFD for 10 weeks. In the prevention study, glutamine treatment ameliorated serum lipid storage, hepatic lipid injury, and oxidative stress in HFD-induced obese mice, although glutamine supplementation did not affect body weight, glucose homeostasis, energy expenditure, and mitochondrial function. In the MAFLD reversal study, there were no noticeable changes in the basic physiological phenotype and hepatic lipid metabolism. In summary, glutamine might prevent, but not reverse, HFD-induced MAFLD in mice, suggesting that a cautious attitude is required regarding its use for MAFLD treatment.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"21 1","pages":"12"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924388/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glutamine prevents high-fat diet-induced hepatic lipid accumulation in mice by modulating lipolysis and oxidative stress.\",\"authors\":\"Yongjie Zhang, Yangli Wang, Xin Liao, Tong Liu, Fengyuan Yang, Kaiqiang Yang, Zhuohua Zhou, Yinxu Fu, Ting Fu, Aliaksei Sysa, Xiandan Chen, Yao Shen, Jianxin Lyu, Qiongya Zhao\",\"doi\":\"10.1186/s12986-024-00784-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic-associated fatty liver disease (MAFLD) is related to metabolic dysfunction and is characterized by excess fat storage in the liver. Several studies have indicated that glutamine could be closely associated with lipid metabolism disturbances because of its important role in intermediary metabolism. However, the effect of glutamine supplementation on MAFLD progression remains unclear. Here, we used a high-fat diet (HFD)-induced MAFLD C57BL/6 mouse model, and glutamine was supplied in the drinking water at different time points for MAFLD prevention and reversal studies. A MAFLD prevention study was performed by feeding mice an HFD concomitant with 4% glutamine treatment for 24 weeks, whereas the MAFLD reversal study was performed based on 4% glutamine treatment for 13 weeks after feeding mice an HFD for 10 weeks. In the prevention study, glutamine treatment ameliorated serum lipid storage, hepatic lipid injury, and oxidative stress in HFD-induced obese mice, although glutamine supplementation did not affect body weight, glucose homeostasis, energy expenditure, and mitochondrial function. In the MAFLD reversal study, there were no noticeable changes in the basic physiological phenotype and hepatic lipid metabolism. In summary, glutamine might prevent, but not reverse, HFD-induced MAFLD in mice, suggesting that a cautious attitude is required regarding its use for MAFLD treatment.</p>\",\"PeriodicalId\":19196,\"journal\":{\"name\":\"Nutrition & Metabolism\",\"volume\":\"21 1\",\"pages\":\"12\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12986-024-00784-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00784-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Glutamine prevents high-fat diet-induced hepatic lipid accumulation in mice by modulating lipolysis and oxidative stress.
Metabolic-associated fatty liver disease (MAFLD) is related to metabolic dysfunction and is characterized by excess fat storage in the liver. Several studies have indicated that glutamine could be closely associated with lipid metabolism disturbances because of its important role in intermediary metabolism. However, the effect of glutamine supplementation on MAFLD progression remains unclear. Here, we used a high-fat diet (HFD)-induced MAFLD C57BL/6 mouse model, and glutamine was supplied in the drinking water at different time points for MAFLD prevention and reversal studies. A MAFLD prevention study was performed by feeding mice an HFD concomitant with 4% glutamine treatment for 24 weeks, whereas the MAFLD reversal study was performed based on 4% glutamine treatment for 13 weeks after feeding mice an HFD for 10 weeks. In the prevention study, glutamine treatment ameliorated serum lipid storage, hepatic lipid injury, and oxidative stress in HFD-induced obese mice, although glutamine supplementation did not affect body weight, glucose homeostasis, energy expenditure, and mitochondrial function. In the MAFLD reversal study, there were no noticeable changes in the basic physiological phenotype and hepatic lipid metabolism. In summary, glutamine might prevent, but not reverse, HFD-induced MAFLD in mice, suggesting that a cautious attitude is required regarding its use for MAFLD treatment.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.