阅读过程中眼动控制动态建模的贝叶斯推理教程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-10 DOI:10.1016/j.jmp.2024.102843
Ralf Engbert , Maximilian M. Rabe
{"title":"阅读过程中眼动控制动态建模的贝叶斯推理教程","authors":"Ralf Engbert ,&nbsp;Maximilian M. Rabe","doi":"10.1016/j.jmp.2024.102843","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamical models are crucial for developing process-oriented, quantitative theories in cognition and behavior. Due to the impressive progress in cognitive theory, domain-specific dynamical models are complex, which typically creates challenges in statistical inference. Mathematical models of eye-movement control might be looked upon as a representative case study. In this tutorial, we introduce and analyze the SWIFT model (Engbert et al., 2002; Engbert et al., 2005), a dynamical modeling framework for eye-movement control in reading that was developed to explain all types of saccades observed in experiments from an activation-based approach. We provide an introduction to dynamical modeling, which explains the basic concepts of SWIFT and its statistical inference. We discuss the likelihood function of a simplified version of the SWIFT model as a key foundation for Bayesian parameter estimation (Rabe et al., 2021; Seelig et al., 2019). In posterior predictive checks, we demonstrate that the simplified model can reproduce interindividual differences via parameter variation. All computations in this tutorial are implemented in the <span>R</span>-Language for Statistical Computing and are made publicly available. We expect that the tutorial might be helpful for advancing dynamical models in other areas of cognitive science.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tutorial on Bayesian inference for dynamical modeling of eye-movement control during reading\",\"authors\":\"Ralf Engbert ,&nbsp;Maximilian M. Rabe\",\"doi\":\"10.1016/j.jmp.2024.102843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamical models are crucial for developing process-oriented, quantitative theories in cognition and behavior. Due to the impressive progress in cognitive theory, domain-specific dynamical models are complex, which typically creates challenges in statistical inference. Mathematical models of eye-movement control might be looked upon as a representative case study. In this tutorial, we introduce and analyze the SWIFT model (Engbert et al., 2002; Engbert et al., 2005), a dynamical modeling framework for eye-movement control in reading that was developed to explain all types of saccades observed in experiments from an activation-based approach. We provide an introduction to dynamical modeling, which explains the basic concepts of SWIFT and its statistical inference. We discuss the likelihood function of a simplified version of the SWIFT model as a key foundation for Bayesian parameter estimation (Rabe et al., 2021; Seelig et al., 2019). In posterior predictive checks, we demonstrate that the simplified model can reproduce interindividual differences via parameter variation. All computations in this tutorial are implemented in the <span>R</span>-Language for Statistical Computing and are made publicly available. We expect that the tutorial might be helpful for advancing dynamical models in other areas of cognitive science.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249624000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

动态模型对于发展认知和行为方面以过程为导向的定量理论至关重要。由于认知理论取得了令人瞩目的进展,特定领域的动态模型非常复杂,这通常会给统计推断带来挑战。眼球运动控制的数学模型可以作为一个代表性案例。在本教程中,我们将介绍并分析 SWIFT 模型(Engbert 等人,2002 年;Engbert 等人,2005 年),这是一个用于阅读中眼球运动控制的动力学建模框架,其开发目的是从基于激活的方法来解释实验中观察到的所有类型的囊视。我们将介绍动态建模,解释 SWIFT 及其统计推断的基本概念。我们讨论了作为贝叶斯参数估计关键基础的 SWIFT 模型简化版的似然函数(Rabe 等人,2021 年;Seelig 等人,2019 年)。在后验预测检查中,我们证明简化模型可以通过参数变化再现个体间差异。本教程中的所有计算均采用 R 统计计算语言实现,并公开发布。我们希望本教程能对认知科学其他领域的动力学模型的发展有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tutorial on Bayesian inference for dynamical modeling of eye-movement control during reading

Dynamical models are crucial for developing process-oriented, quantitative theories in cognition and behavior. Due to the impressive progress in cognitive theory, domain-specific dynamical models are complex, which typically creates challenges in statistical inference. Mathematical models of eye-movement control might be looked upon as a representative case study. In this tutorial, we introduce and analyze the SWIFT model (Engbert et al., 2002; Engbert et al., 2005), a dynamical modeling framework for eye-movement control in reading that was developed to explain all types of saccades observed in experiments from an activation-based approach. We provide an introduction to dynamical modeling, which explains the basic concepts of SWIFT and its statistical inference. We discuss the likelihood function of a simplified version of the SWIFT model as a key foundation for Bayesian parameter estimation (Rabe et al., 2021; Seelig et al., 2019). In posterior predictive checks, we demonstrate that the simplified model can reproduce interindividual differences via parameter variation. All computations in this tutorial are implemented in the R-Language for Statistical Computing and are made publicly available. We expect that the tutorial might be helpful for advancing dynamical models in other areas of cognitive science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1