植物与沉积物的相互作用使盐沼土壤中无机碳储量与有机碳储量的发展脱钩

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-03-09 DOI:10.1002/lol2.10382
Dirk Granse, Antonia Wanner, Martin Stock, Kai Jensen, Peter Mueller
{"title":"植物与沉积物的相互作用使盐沼土壤中无机碳储量与有机碳储量的发展脱钩","authors":"Dirk Granse,&nbsp;Antonia Wanner,&nbsp;Martin Stock,&nbsp;Kai Jensen,&nbsp;Peter Mueller","doi":"10.1002/lol2.10382","DOIUrl":null,"url":null,"abstract":"<p>The storage of organic carbon in the soils of salt marshes and other coastal blue carbon ecosystems has gained considerable attention by the scientific community for more than a decade now, while the relevance and mechanisms of soil inorganic carbon accumulation remain poorly understood. Using long-term annual accretion monitoring over 17 years in <i>N</i> = 50 permanent plots distributed across a 1050-ha salt-marsh complex of the European Wadden Sea, we identified clear relationships between salt-marsh vertical growth rates and the soil densities of inorganic and organic carbon. Specifically, we demonstrate a strong positive correlation between vertical accretion and inorganic carbon density while observing a strong negative correlation between vertical accretion and organic carbon density. This decoupling observed between inorganic and organic soil carbon stocks was governed by plant community composition and associated plant traits, which controlled sedimentation processes.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10382","citationCount":"0","resultStr":"{\"title\":\"Plant-sediment interactions decouple inorganic from organic carbon stock development in salt marsh soils\",\"authors\":\"Dirk Granse,&nbsp;Antonia Wanner,&nbsp;Martin Stock,&nbsp;Kai Jensen,&nbsp;Peter Mueller\",\"doi\":\"10.1002/lol2.10382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The storage of organic carbon in the soils of salt marshes and other coastal blue carbon ecosystems has gained considerable attention by the scientific community for more than a decade now, while the relevance and mechanisms of soil inorganic carbon accumulation remain poorly understood. Using long-term annual accretion monitoring over 17 years in <i>N</i> = 50 permanent plots distributed across a 1050-ha salt-marsh complex of the European Wadden Sea, we identified clear relationships between salt-marsh vertical growth rates and the soil densities of inorganic and organic carbon. Specifically, we demonstrate a strong positive correlation between vertical accretion and inorganic carbon density while observing a strong negative correlation between vertical accretion and organic carbon density. This decoupling observed between inorganic and organic soil carbon stocks was governed by plant community composition and associated plant traits, which controlled sedimentation processes.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10382\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10382","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

十多年来,盐沼和其他沿岸蓝碳生态系统土壤中的有机碳储存问题受到了科学界的广泛关注,但人们对土壤无机碳积累的相关性和机制仍然知之甚少。通过对分布在欧洲瓦登海 1050 公顷盐沼复合体中的 N = 50 个永久性地块进行长达 17 年的长期年度累积监测,我们发现盐沼垂直生长率与土壤中无机碳和有机碳密度之间存在明确的关系。具体来说,我们证明了垂直增生与无机碳密度之间存在很强的正相关性,同时观察到垂直增生与有机碳密度之间存在很强的负相关性。无机和有机土壤碳储量之间的脱钩受植物群落组成和相关植物性状的影响,而植物群落组成和相关植物性状又控制着沉积过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant-sediment interactions decouple inorganic from organic carbon stock development in salt marsh soils

The storage of organic carbon in the soils of salt marshes and other coastal blue carbon ecosystems has gained considerable attention by the scientific community for more than a decade now, while the relevance and mechanisms of soil inorganic carbon accumulation remain poorly understood. Using long-term annual accretion monitoring over 17 years in N = 50 permanent plots distributed across a 1050-ha salt-marsh complex of the European Wadden Sea, we identified clear relationships between salt-marsh vertical growth rates and the soil densities of inorganic and organic carbon. Specifically, we demonstrate a strong positive correlation between vertical accretion and inorganic carbon density while observing a strong negative correlation between vertical accretion and organic carbon density. This decoupling observed between inorganic and organic soil carbon stocks was governed by plant community composition and associated plant traits, which controlled sedimentation processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment Snow removal cools a small dystrophic lake Unraveling Lake Geneva's hypoxia crisis in the Anthropocene Simple visualization of fish migration history based on high‐resolution otolith δ18O profiles and hydrodynamic models Arctic fishes reveal patterns in radiocarbon age across habitats and with recent climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1