{"title":"街区划分:城市形态学与点和流数据集相结合的方法","authors":"Anirudh Govind, Ate Poorthuis, Ben Derudder","doi":"10.1111/gean.12394","DOIUrl":null,"url":null,"abstract":"<p>Although neighborhoods are a widely used analytical concept in urban geography, they are often proxied using grids or statistical sectors in empirical research. The rationales underlying these proxies are often separated from the theoretical considerations of what makes a neighborhood a neighborhood, casting shadows over their relevance and applicability. In this article, we identify two specific challenges separating empirical operationalizations from theoretical considerations in neighborhood delineations: (1) not incorporating key built environment elements and (2) monodimensional approaches. We develop a method that addresses this double challenge by (1) creating morphological basic spatial units (BSUs) and (2) aggregating them into neighborhoods using multilayer community detection (MLCD) drawing on datasets used in both formal and functional regionalization approaches. We illustrate this method for the case of Leuven, Belgium, by (1) using street blocks as BSUs and (2) focusing on proximity, land use, and social interactions. Through a comparative analysis, we show that our results align with theoretical considerations and perform as well as, and perhaps better, than statistical sectors and grids as neighborhood representations. We therefore argue that this flexible method can bridge formal and functional regionalization approaches making the case for its adoption in neighborhood delineation exercises.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"56 4","pages":"700-722"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineating Neighborhoods: An Approach Combining Urban Morphology with Point and Flow Datasets\",\"authors\":\"Anirudh Govind, Ate Poorthuis, Ben Derudder\",\"doi\":\"10.1111/gean.12394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although neighborhoods are a widely used analytical concept in urban geography, they are often proxied using grids or statistical sectors in empirical research. The rationales underlying these proxies are often separated from the theoretical considerations of what makes a neighborhood a neighborhood, casting shadows over their relevance and applicability. In this article, we identify two specific challenges separating empirical operationalizations from theoretical considerations in neighborhood delineations: (1) not incorporating key built environment elements and (2) monodimensional approaches. We develop a method that addresses this double challenge by (1) creating morphological basic spatial units (BSUs) and (2) aggregating them into neighborhoods using multilayer community detection (MLCD) drawing on datasets used in both formal and functional regionalization approaches. We illustrate this method for the case of Leuven, Belgium, by (1) using street blocks as BSUs and (2) focusing on proximity, land use, and social interactions. Through a comparative analysis, we show that our results align with theoretical considerations and perform as well as, and perhaps better, than statistical sectors and grids as neighborhood representations. We therefore argue that this flexible method can bridge formal and functional regionalization approaches making the case for its adoption in neighborhood delineation exercises.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"56 4\",\"pages\":\"700-722\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12394\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12394","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Delineating Neighborhoods: An Approach Combining Urban Morphology with Point and Flow Datasets
Although neighborhoods are a widely used analytical concept in urban geography, they are often proxied using grids or statistical sectors in empirical research. The rationales underlying these proxies are often separated from the theoretical considerations of what makes a neighborhood a neighborhood, casting shadows over their relevance and applicability. In this article, we identify two specific challenges separating empirical operationalizations from theoretical considerations in neighborhood delineations: (1) not incorporating key built environment elements and (2) monodimensional approaches. We develop a method that addresses this double challenge by (1) creating morphological basic spatial units (BSUs) and (2) aggregating them into neighborhoods using multilayer community detection (MLCD) drawing on datasets used in both formal and functional regionalization approaches. We illustrate this method for the case of Leuven, Belgium, by (1) using street blocks as BSUs and (2) focusing on proximity, land use, and social interactions. Through a comparative analysis, we show that our results align with theoretical considerations and perform as well as, and perhaps better, than statistical sectors and grids as neighborhood representations. We therefore argue that this flexible method can bridge formal and functional regionalization approaches making the case for its adoption in neighborhood delineation exercises.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.