{"title":"外源施用植物生长调节剂可提高盐碱条件下晚播小麦的经济收益、谷物产量和品质特征","authors":"","doi":"10.1007/s42106-024-00285-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Studies on the wheat response under late sowing (LS) and salinity stress (SS) are available, however, in rice-wheat and cotton-wheat cropping systems, wheat planting is often delayed resulting in co-occurrence of LS and SS in salt affected soils. This two-year field study was conducted to evaluate the influence of foliar application of plant growth regulators (PGRs) [thiourea (TU), salicylic acid (SA) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); water and no application were taken as control] on the productivity, grain quality and economic returns of timely-sown (TS) and LS wheat under normal (NC) and natural saline conditions (SS; EC 11.27 dS m<sup>− 1</sup>). Delay in sowing and planting in naturally saline soils caused a significant decrease in plant growth, grain yield, grain quality and net economic returns during both years of study. Late planting and SS caused a significant reduction in grain yield reduction by 40.58% and 34.72% (LS) and 40.66% and 42.89% (SS) compared with respective controls during 2021 and 2022, respectively. However, the influence of co-occurrence of LS and SS was more devastating than the individual stress causing 62.17% and 60.18% reduction in grain yield than the respective control during 2021 and 2022, respectively. However, the application of all PGRs improved the grain yield, grain quality and economic turnover under SS and LS stress. The order of improvement in grain yield by the application of PGRs treatments was TU > SA > H<sub>2</sub>O<sub>2</sub>. In conclusion, the application of different plant growth regulators improved economic returns, grain yield and quality attributes of late-sown wheat under saline conditions. In this regard, TU application was the most effective.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"22 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous Application of Plant Growth Regulators Improves Economic Returns, Grain Yield and Quality Attributes of Late-Sown Wheat under Saline Conditions\",\"authors\":\"\",\"doi\":\"10.1007/s42106-024-00285-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Studies on the wheat response under late sowing (LS) and salinity stress (SS) are available, however, in rice-wheat and cotton-wheat cropping systems, wheat planting is often delayed resulting in co-occurrence of LS and SS in salt affected soils. This two-year field study was conducted to evaluate the influence of foliar application of plant growth regulators (PGRs) [thiourea (TU), salicylic acid (SA) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); water and no application were taken as control] on the productivity, grain quality and economic returns of timely-sown (TS) and LS wheat under normal (NC) and natural saline conditions (SS; EC 11.27 dS m<sup>− 1</sup>). Delay in sowing and planting in naturally saline soils caused a significant decrease in plant growth, grain yield, grain quality and net economic returns during both years of study. Late planting and SS caused a significant reduction in grain yield reduction by 40.58% and 34.72% (LS) and 40.66% and 42.89% (SS) compared with respective controls during 2021 and 2022, respectively. However, the influence of co-occurrence of LS and SS was more devastating than the individual stress causing 62.17% and 60.18% reduction in grain yield than the respective control during 2021 and 2022, respectively. However, the application of all PGRs improved the grain yield, grain quality and economic turnover under SS and LS stress. The order of improvement in grain yield by the application of PGRs treatments was TU > SA > H<sub>2</sub>O<sub>2</sub>. In conclusion, the application of different plant growth regulators improved economic returns, grain yield and quality attributes of late-sown wheat under saline conditions. In this regard, TU application was the most effective.</p>\",\"PeriodicalId\":54947,\"journal\":{\"name\":\"International Journal of Plant Production\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Production\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42106-024-00285-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-024-00285-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 目前已有关于小麦在晚播(LS)和盐分胁迫(SS)下的反应的研究,但在水稻-小麦和棉花-小麦种植系统中,小麦播种往往被推迟,导致盐分影响土壤中同时出现晚播和盐分胁迫。这项为期两年的田间研究旨在评估叶面喷施植物生长调节剂(PGRs)[硫脲(TU)、水杨酸(SA)和过氧化氢(H2O2);以水和不喷施为对照]对正常(NC)和自然盐碱条件(SS;EC 11.27 dS m-1)下适时播种(TS)和LS小麦的产量、谷物品质和经济收益的影响。在自然盐碱土壤中延迟播种和种植会导致两年研究期间的植物生长、谷物产量、谷物品质和净经济收益显著下降。与 2021 年和 2022 年的对照组相比,延迟播种和 SS 导致谷物产量分别减少了 40.58% 和 34.72%(LS),以及 40.66% 和 42.89%(SS)。然而,在 2021 年和 2022 年期间,LS 和 SS 的共存影响比单独胁迫的破坏性更大,导致谷物产量比各自的对照分别减少 62.17% 和 60.18%。然而,在 SS 和 LS 胁迫下,施用所有 PGRs 都能提高谷物产量、谷物品质和经济效益。施用 PGRs 处理提高谷物产量的顺序为 TU > SA > H2O2。总之,在盐碱条件下,施用不同的植物生长调节剂可提高晚播小麦的经济收益、谷物产量和品质属性。其中,施用 TU 的效果最好。
Exogenous Application of Plant Growth Regulators Improves Economic Returns, Grain Yield and Quality Attributes of Late-Sown Wheat under Saline Conditions
Abstract
Studies on the wheat response under late sowing (LS) and salinity stress (SS) are available, however, in rice-wheat and cotton-wheat cropping systems, wheat planting is often delayed resulting in co-occurrence of LS and SS in salt affected soils. This two-year field study was conducted to evaluate the influence of foliar application of plant growth regulators (PGRs) [thiourea (TU), salicylic acid (SA) and hydrogen peroxide (H2O2); water and no application were taken as control] on the productivity, grain quality and economic returns of timely-sown (TS) and LS wheat under normal (NC) and natural saline conditions (SS; EC 11.27 dS m− 1). Delay in sowing and planting in naturally saline soils caused a significant decrease in plant growth, grain yield, grain quality and net economic returns during both years of study. Late planting and SS caused a significant reduction in grain yield reduction by 40.58% and 34.72% (LS) and 40.66% and 42.89% (SS) compared with respective controls during 2021 and 2022, respectively. However, the influence of co-occurrence of LS and SS was more devastating than the individual stress causing 62.17% and 60.18% reduction in grain yield than the respective control during 2021 and 2022, respectively. However, the application of all PGRs improved the grain yield, grain quality and economic turnover under SS and LS stress. The order of improvement in grain yield by the application of PGRs treatments was TU > SA > H2O2. In conclusion, the application of different plant growth regulators improved economic returns, grain yield and quality attributes of late-sown wheat under saline conditions. In this regard, TU application was the most effective.
期刊介绍:
IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions.
Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions.
Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.