利用 µ-XRF 和 LIBS 对小型和不规则玻璃碎片进行元素比较的性能评估

IF 2.6 3区 医学 Q2 CHEMISTRY, ANALYTICAL Forensic Chemistry Pub Date : 2024-03-04 DOI:10.1016/j.forc.2024.100567
Oriana Ovide , Ruthmara Corzo , Tatiana Trejos
{"title":"利用 µ-XRF 和 LIBS 对小型和不规则玻璃碎片进行元素比较的性能评估","authors":"Oriana Ovide ,&nbsp;Ruthmara Corzo ,&nbsp;Tatiana Trejos","doi":"10.1016/j.forc.2024.100567","DOIUrl":null,"url":null,"abstract":"<div><p>This study describes a systematic assessment of the performance rates when analyzing small and irregular glass fragments using micro-X-ray Fluorescence Spectrometry (µ-XRF) and Laser Induced Breakdown Spectroscopy (LIBS). One hundred glass fragments were collected from the inner and outer panes of a vehicle windshield to assess the false exclusion rates. Additionally, 100 glass fragments originating from different vehicle windshields were used to evaluate the discrimination capabilities. To compare the effects of fragment size on the performance rates, half of the collected fragments were small (longest length between 0.4 mm and &lt; 1 mm, and thickness greater than 0.4 mm for LIBS and 0.1 mm for μ-XRF), and the other half were full-thickness fragments (2 mm and greater). The study shows that precision deteriorates for small/irregular fragments and comparison items must have a similar size, shape, and thickness to minimize error rates. Thus, comparisons between full-thickness and small/irregular fragments should be avoided, regardless of the analytical method. Although this general concept is well known for µ-XRF, this effect was not previously reported as a concern for LIBS. Moreover, this study provides new sampling and comparison recommendations when using modern silicon drift detectors (SDD) and reduced fragment size. Using a 3 s (3 %RSD) comparison interval reduces the false exclusion rates to &lt; 12 % for µ-XRF, and to &lt; 4 % for LIBS when using either a 3 s or 4 s (3 % RSD) criterion. At least 4 known fragments are recommended for full thickness fragments and 6 to 9 known fragments for the small/irregular comparisons.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"38 ","pages":"Article 100567"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of performance rates on the elemental comparison of small and irregular glass fragments using µ-XRF and LIBS\",\"authors\":\"Oriana Ovide ,&nbsp;Ruthmara Corzo ,&nbsp;Tatiana Trejos\",\"doi\":\"10.1016/j.forc.2024.100567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study describes a systematic assessment of the performance rates when analyzing small and irregular glass fragments using micro-X-ray Fluorescence Spectrometry (µ-XRF) and Laser Induced Breakdown Spectroscopy (LIBS). One hundred glass fragments were collected from the inner and outer panes of a vehicle windshield to assess the false exclusion rates. Additionally, 100 glass fragments originating from different vehicle windshields were used to evaluate the discrimination capabilities. To compare the effects of fragment size on the performance rates, half of the collected fragments were small (longest length between 0.4 mm and &lt; 1 mm, and thickness greater than 0.4 mm for LIBS and 0.1 mm for μ-XRF), and the other half were full-thickness fragments (2 mm and greater). The study shows that precision deteriorates for small/irregular fragments and comparison items must have a similar size, shape, and thickness to minimize error rates. Thus, comparisons between full-thickness and small/irregular fragments should be avoided, regardless of the analytical method. Although this general concept is well known for µ-XRF, this effect was not previously reported as a concern for LIBS. Moreover, this study provides new sampling and comparison recommendations when using modern silicon drift detectors (SDD) and reduced fragment size. Using a 3 s (3 %RSD) comparison interval reduces the false exclusion rates to &lt; 12 % for µ-XRF, and to &lt; 4 % for LIBS when using either a 3 s or 4 s (3 % RSD) criterion. At least 4 known fragments are recommended for full thickness fragments and 6 to 9 known fragments for the small/irregular comparisons.</p></div>\",\"PeriodicalId\":324,\"journal\":{\"name\":\"Forensic Chemistry\",\"volume\":\"38 \",\"pages\":\"Article 100567\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468170924000195\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170924000195","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of performance rates on the elemental comparison of small and irregular glass fragments using µ-XRF and LIBS

This study describes a systematic assessment of the performance rates when analyzing small and irregular glass fragments using micro-X-ray Fluorescence Spectrometry (µ-XRF) and Laser Induced Breakdown Spectroscopy (LIBS). One hundred glass fragments were collected from the inner and outer panes of a vehicle windshield to assess the false exclusion rates. Additionally, 100 glass fragments originating from different vehicle windshields were used to evaluate the discrimination capabilities. To compare the effects of fragment size on the performance rates, half of the collected fragments were small (longest length between 0.4 mm and < 1 mm, and thickness greater than 0.4 mm for LIBS and 0.1 mm for μ-XRF), and the other half were full-thickness fragments (2 mm and greater). The study shows that precision deteriorates for small/irregular fragments and comparison items must have a similar size, shape, and thickness to minimize error rates. Thus, comparisons between full-thickness and small/irregular fragments should be avoided, regardless of the analytical method. Although this general concept is well known for µ-XRF, this effect was not previously reported as a concern for LIBS. Moreover, this study provides new sampling and comparison recommendations when using modern silicon drift detectors (SDD) and reduced fragment size. Using a 3 s (3 %RSD) comparison interval reduces the false exclusion rates to < 12 % for µ-XRF, and to < 4 % for LIBS when using either a 3 s or 4 s (3 % RSD) criterion. At least 4 known fragments are recommended for full thickness fragments and 6 to 9 known fragments for the small/irregular comparisons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Chemistry
Forensic Chemistry CHEMISTRY, ANALYTICAL-
CiteScore
5.70
自引率
14.80%
发文量
65
审稿时长
46 days
期刊介绍: Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.
期刊最新文献
Development and evaluation of a nontargeted electrochemical surface-enhanced Raman spectroscopy (EC-SERS) screening method applied to forensic seized drug casework samples Observation of chromatographic differences by non-specialist viewers for one-dimensional gas chromatography and comprehensive two-dimensional gas chromatography output Assessment of two benzylation strategies for the analysis of nerve-agent derived ethyl- and pinacolyl methyl phosphonic acids in sandy loam soil by GC–MS Portable near-infrared detection to replace color tests in an analytical scheme for forensic drug identification Halogen-bond mediated charge transfer for visual competitive colorimetric detection of fentanyl
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1