设计集成宽带 WR34 波段双工器-天线阵列模块,探索用于空间应用的单片金属 3-D 打印技术

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Microwaves Antennas & Propagation Pub Date : 2024-03-08 DOI:10.1049/mia2.12468
Povilas Vaitukaitis, Jiayu Rao, Kenneth Nai, Jiasheng Hong
{"title":"设计集成宽带 WR34 波段双工器-天线阵列模块,探索用于空间应用的单片金属 3-D 打印技术","authors":"Povilas Vaitukaitis,&nbsp;Jiayu Rao,&nbsp;Kenneth Nai,&nbsp;Jiasheng Hong","doi":"10.1049/mia2.12468","DOIUrl":null,"url":null,"abstract":"<p>The design of a wideband diplexer integrated with a 16-slot Continuous Transverse Stub (CTS) antenna array is presented. The diplexer-antenna array module covers the whole WR34 band. The Tx and Rx bands cover 21.7–26 and 27.5–33 GHz ranges, respectively. The diplexer is designed to have a 100 dB attenuation in the stopband and 40 dB isolation between the channels. The antenna array has a high gain, between 26.9 and 31 dBi, at the lowest and highest frequencies. For the preliminary exploration of monolithic metal 3-D printing of complex geometry integrated RF front ends, two prototypes were manufactured in AlSi10 Mg. One-piece fabrication eliminates complicated assembly, enhances reliability, and reduces weight, which is more desirable for space applications. Due to several factors, namely, an unpolished inner surface and imperfect printing quality, the diplexer had a poor measured performance. The measured results of the antenna array had a relatively better agreement with simulations. Although, the realised gain was affected by the much lower effective conductivity of the unpolished 3-D printed material. Hence, the measured realised gain was between 27.8 and 30.9 dBi in the 29–33 GHz range.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 4","pages":"280-290"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12468","citationCount":"0","resultStr":"{\"title\":\"Design of integrated wideband WR34-band diplexer-antenna array module for exploration of monolithic metal 3-D printing for space applications\",\"authors\":\"Povilas Vaitukaitis,&nbsp;Jiayu Rao,&nbsp;Kenneth Nai,&nbsp;Jiasheng Hong\",\"doi\":\"10.1049/mia2.12468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design of a wideband diplexer integrated with a 16-slot Continuous Transverse Stub (CTS) antenna array is presented. The diplexer-antenna array module covers the whole WR34 band. The Tx and Rx bands cover 21.7–26 and 27.5–33 GHz ranges, respectively. The diplexer is designed to have a 100 dB attenuation in the stopband and 40 dB isolation between the channels. The antenna array has a high gain, between 26.9 and 31 dBi, at the lowest and highest frequencies. For the preliminary exploration of monolithic metal 3-D printing of complex geometry integrated RF front ends, two prototypes were manufactured in AlSi10 Mg. One-piece fabrication eliminates complicated assembly, enhances reliability, and reduces weight, which is more desirable for space applications. Due to several factors, namely, an unpolished inner surface and imperfect printing quality, the diplexer had a poor measured performance. The measured results of the antenna array had a relatively better agreement with simulations. Although, the realised gain was affected by the much lower effective conductivity of the unpolished 3-D printed material. Hence, the measured realised gain was between 27.8 and 30.9 dBi in the 29–33 GHz range.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"18 4\",\"pages\":\"280-290\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12468\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12468\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12468","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了与 16 槽连续横向短天线(CTS)阵列集成的宽带双工器的设计。双工器-天线阵列模块覆盖整个 WR34 波段。发送和接收频段分别覆盖 21.7-26 和 27.5-33 GHz 范围。双工器在设计上具有 100 dB 的阻带衰减和 40 dB 的信道间隔离。天线阵列在最低和最高频率上具有 26.9 至 31 dBi 的高增益。为了初步探索复杂几何形状集成射频前端的单片金属三维打印技术,我们用 AlSi10 Mg 制造了两个原型。一体式制造消除了复杂的装配,提高了可靠性,减轻了重量,这对于太空应用来说更为理想。由于内表面未抛光和印刷质量不佳等因素,双工器的测量性能较差。天线阵列的测量结果与模拟结果的一致性相对较好。不过,由于未抛光的三维打印材料的有效电导率低得多,实际增益受到了影响。因此,在 29-33 GHz 范围内,测量的实际增益介于 27.8 和 30.9 dBi 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of integrated wideband WR34-band diplexer-antenna array module for exploration of monolithic metal 3-D printing for space applications

The design of a wideband diplexer integrated with a 16-slot Continuous Transverse Stub (CTS) antenna array is presented. The diplexer-antenna array module covers the whole WR34 band. The Tx and Rx bands cover 21.7–26 and 27.5–33 GHz ranges, respectively. The diplexer is designed to have a 100 dB attenuation in the stopband and 40 dB isolation between the channels. The antenna array has a high gain, between 26.9 and 31 dBi, at the lowest and highest frequencies. For the preliminary exploration of monolithic metal 3-D printing of complex geometry integrated RF front ends, two prototypes were manufactured in AlSi10 Mg. One-piece fabrication eliminates complicated assembly, enhances reliability, and reduces weight, which is more desirable for space applications. Due to several factors, namely, an unpolished inner surface and imperfect printing quality, the diplexer had a poor measured performance. The measured results of the antenna array had a relatively better agreement with simulations. Although, the realised gain was affected by the much lower effective conductivity of the unpolished 3-D printed material. Hence, the measured realised gain was between 27.8 and 30.9 dBi in the 29–33 GHz range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
期刊最新文献
Miniaturised ultra-wideband circular polarised koch fractal crossed dipole array Phase-only transmit beampattern synthesis with sparse arrays via alternating optimisation-alternating direction of the multipliers method Breakthrough design of power handling capability-enhanced slotted oversized substrate-integrated waveguide power divider/combiner considering corona and thermal effects Synthesis of sparse rectangular planar arrays with weight function and improved grey wolf optimization algorithm A compact half-mode substrate integrated waveguide bandpass filter based on highly confined slow waves with loading capacitive patches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1