用于异构蜂群的情境感知智能控制代理

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm Intelligence Pub Date : 2024-03-08 DOI:10.1007/s11721-024-00235-w
{"title":"用于异构蜂群的情境感知智能控制代理","authors":"","doi":"10.1007/s11721-024-00235-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm’s abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"217 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextually aware intelligent control agents for heterogeneous swarms\",\"authors\":\"\",\"doi\":\"10.1007/s11721-024-00235-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm’s abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.</p>\",\"PeriodicalId\":51284,\"journal\":{\"name\":\"Swarm Intelligence\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11721-024-00235-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11721-024-00235-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在蜂群牧羊研究中,一个新出现的挑战是设计有效和高效的人工智能算法,既能保持决策模型的简洁性,又能提高蜂群在不同环境下的运行能力。我们提出了一种设计情境感知蜂群控制智能代理(牧羊人)的方法。我们首先利用蜂群度量来识别与牧羊人互动的蜂群类型,然后从其行为库中选择适合该特定蜂群类型的参数。我们的方法的设计原则是在不牺牲高效蜂群控制所需的低计算成本的前提下,提高控制代理的情况意识(即内容)。我们展示了在同质和异质蜂群中的成功牧羊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextually aware intelligent control agents for heterogeneous swarms

Abstract

An emerging challenge in swarm shepherding research is to design effective and efficient artificial intelligence algorithms that maintain simplicity in their decision models, whilst increasing the swarm’s abilities to operate in diverse contexts. We propose a methodology to design a context-aware swarm control intelligent agent (shepherd). We first use swarm metrics to recognise the type of swarm that the shepherd interacts with, then select a suitable parameterisation from its behavioural library for that particular swarm type. The design principle of our methodology is to increase the situation awareness (i.e. contents) of the control agent without sacrificing the low computational cost necessary for efficient swarm control. We demonstrate successful shepherding in both homogeneous and heterogeneous swarms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm Intelligence
Swarm Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
CiteScore
5.70
自引率
11.50%
发文量
11
审稿时长
>12 weeks
期刊介绍: Swarm Intelligence is the principal peer-reviewed publication dedicated to reporting on research and developments in the multidisciplinary field of swarm intelligence. The journal publishes original research articles and occasional review articles on theoretical, experimental and/or practical aspects of swarm intelligence. All articles are published both in print and in electronic form. There are no page charges for publication. Swarm Intelligence is published quarterly. The field of swarm intelligence deals with systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, it focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment. It is a fast-growing field that encompasses the efforts of researchers in multiple disciplines, ranging from ethology and social science to operations research and computer engineering. Swarm Intelligence will report on advances in the understanding and utilization of swarm intelligence systems, that is, systems that are based on the principles of swarm intelligence. The following subjects are of particular interest to the journal: • modeling and analysis of collective biological systems such as social insect colonies, flocking vertebrates, and human crowds as well as any other swarm intelligence systems; • application of biological swarm intelligence models to real-world problems such as distributed computing, data clustering, graph partitioning, optimization and decision making; • theoretical and empirical research in ant colony optimization, particle swarm optimization, swarm robotics, and other swarm intelligence algorithms.
期刊最新文献
Resilient swarm behaviors via online evolution and behavior fusion Decentralized traffic management of autonomous drones Non-uniform magnetic fields for collective behavior of self-assembled magnetic pillars The viability of domain constrained coalition formation for robotic collectives Imprecise evidence in social learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1