评估 HEPES 的急性静脉毒性:Good 的缓冲器是否足够好、足够安全,可用于核医学的临床应用?

IF 3.6 4区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Nuclear medicine and biology Pub Date : 2024-03-09 DOI:10.1016/j.nucmedbio.2024.108895
Mohini Guleria , K.J. Pallavi , Pranjal P. Gujarathi , Tapas Das
{"title":"评估 HEPES 的急性静脉毒性:Good 的缓冲器是否足够好、足够安全,可用于核医学的临床应用?","authors":"Mohini Guleria ,&nbsp;K.J. Pallavi ,&nbsp;Pranjal P. Gujarathi ,&nbsp;Tapas Das","doi":"10.1016/j.nucmedbio.2024.108895","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Good's buffer or HEPES has advantages over other buffers commonly used in radiopharmaceutical preparation as it exhibits significantly lower complexation tendency with metal ions. However, use of HEPES buffer for radiolabeling reactions, meant for clinical applications, has been underrated due to the non-availability of sufficient toxicity data. The objective of the present study is to find the evidences towards safety of intravenous administration of HEPES through systemic toxicological studies in small animal model to support its safe application for clinical exploitation.</p></div><div><h3>Experimental</h3><p>A pilot study was performed to investigate the lethal dose of HEPES in female Sprague Dawley rats by administering seven different doses of HEPES solution (150 to 2000 mg/kg), through intravenous pathway. Similarly, for determining maximum tolerated dose (MTD), gradually increasing doses of HEPES (50 to 950 mg/kg) were administered in the same species via similar pathway. Various hematological and clinical pathological investigations were carried out in order to find out the safe administration dose of HEPES in rats.</p></div><div><h3>Results</h3><p>No mortality was observed up to 2000 mg/kg doses of HEPES. The doses beyond 300 mg/kg resulted few temporary adverse effects, though these were found to disappear within 4–5 days of dosing.</p></div><div><h3>Conclusion</h3><p>The amount of HEPES to be administered during clinical intervention is usually much lower (typically 1–2.5 mg per kg of body weight of healthy adult) than the MTD determined in rat model during present report. Hence, the utilization of this buffer for preparation of radiolabeled drugs for human investigation may be safe. However, further detailed investigations may be warranted for supporting the candidature of Good's buffer for regular clinical exploitation.</p></div>","PeriodicalId":19363,"journal":{"name":"Nuclear medicine and biology","volume":"132 ","pages":"Article 108895"},"PeriodicalIF":3.6000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of acute intravenous toxicity of HEPES: Is Good's buffer good and safe enough for clinical utilization in nuclear medicine?\",\"authors\":\"Mohini Guleria ,&nbsp;K.J. Pallavi ,&nbsp;Pranjal P. Gujarathi ,&nbsp;Tapas Das\",\"doi\":\"10.1016/j.nucmedbio.2024.108895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Good's buffer or HEPES has advantages over other buffers commonly used in radiopharmaceutical preparation as it exhibits significantly lower complexation tendency with metal ions. However, use of HEPES buffer for radiolabeling reactions, meant for clinical applications, has been underrated due to the non-availability of sufficient toxicity data. The objective of the present study is to find the evidences towards safety of intravenous administration of HEPES through systemic toxicological studies in small animal model to support its safe application for clinical exploitation.</p></div><div><h3>Experimental</h3><p>A pilot study was performed to investigate the lethal dose of HEPES in female Sprague Dawley rats by administering seven different doses of HEPES solution (150 to 2000 mg/kg), through intravenous pathway. Similarly, for determining maximum tolerated dose (MTD), gradually increasing doses of HEPES (50 to 950 mg/kg) were administered in the same species via similar pathway. Various hematological and clinical pathological investigations were carried out in order to find out the safe administration dose of HEPES in rats.</p></div><div><h3>Results</h3><p>No mortality was observed up to 2000 mg/kg doses of HEPES. The doses beyond 300 mg/kg resulted few temporary adverse effects, though these were found to disappear within 4–5 days of dosing.</p></div><div><h3>Conclusion</h3><p>The amount of HEPES to be administered during clinical intervention is usually much lower (typically 1–2.5 mg per kg of body weight of healthy adult) than the MTD determined in rat model during present report. Hence, the utilization of this buffer for preparation of radiolabeled drugs for human investigation may be safe. However, further detailed investigations may be warranted for supporting the candidature of Good's buffer for regular clinical exploitation.</p></div>\",\"PeriodicalId\":19363,\"journal\":{\"name\":\"Nuclear medicine and biology\",\"volume\":\"132 \",\"pages\":\"Article 108895\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969805124000210\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969805124000210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

古德缓冲液或 HEPES 与其他常用于放射性药物制备的缓冲液相比具有优势,因为它与金属离子的络合趋势明显较低。然而,由于缺乏足够的毒性数据,用于临床应用的放射性标记反应的 HEPES 缓冲液一直被低估。本研究的目的是通过在小动物模型中进行全身毒理学研究,寻找 HEPES 静脉注射安全性的证据,以支持其在临床应用中的安全应用。试验性研究通过静脉途径给雌性 Sprague Dawley 大鼠注射七种不同剂量的 HEPES 溶液(150 至 2000 毫克/千克),以调查 HEPES 的致死剂量。同样,为了确定最大耐受剂量(MTD),也通过类似途径给同一物种大鼠注射逐渐增加剂量的 HEPES 溶液(50 至 950 毫克/千克)。为了确定大鼠的安全给药剂量,对大鼠进行了各种血液学和临床病理学检查。在每公斤 2000 毫克的剂量范围内,没有观察到死亡现象。超过 300 毫克/千克的剂量会导致一些暂时性的不良反应,但这些反应会在用药后 4-5 天内消失。临床干预期间的 HEPES 给药量通常(通常为健康成人每公斤体重 1-2.5 毫克)远低于本报告在大鼠模型中确定的 MTD。因此,使用这种缓冲液制备放射性标记药物进行人体研究可能是安全的。不过,要支持 Good's 缓冲液用于常规临床应用,可能还需要进一步的详细研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of acute intravenous toxicity of HEPES: Is Good's buffer good and safe enough for clinical utilization in nuclear medicine?

Objective

Good's buffer or HEPES has advantages over other buffers commonly used in radiopharmaceutical preparation as it exhibits significantly lower complexation tendency with metal ions. However, use of HEPES buffer for radiolabeling reactions, meant for clinical applications, has been underrated due to the non-availability of sufficient toxicity data. The objective of the present study is to find the evidences towards safety of intravenous administration of HEPES through systemic toxicological studies in small animal model to support its safe application for clinical exploitation.

Experimental

A pilot study was performed to investigate the lethal dose of HEPES in female Sprague Dawley rats by administering seven different doses of HEPES solution (150 to 2000 mg/kg), through intravenous pathway. Similarly, for determining maximum tolerated dose (MTD), gradually increasing doses of HEPES (50 to 950 mg/kg) were administered in the same species via similar pathway. Various hematological and clinical pathological investigations were carried out in order to find out the safe administration dose of HEPES in rats.

Results

No mortality was observed up to 2000 mg/kg doses of HEPES. The doses beyond 300 mg/kg resulted few temporary adverse effects, though these were found to disappear within 4–5 days of dosing.

Conclusion

The amount of HEPES to be administered during clinical intervention is usually much lower (typically 1–2.5 mg per kg of body weight of healthy adult) than the MTD determined in rat model during present report. Hence, the utilization of this buffer for preparation of radiolabeled drugs for human investigation may be safe. However, further detailed investigations may be warranted for supporting the candidature of Good's buffer for regular clinical exploitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear medicine and biology
Nuclear medicine and biology 医学-核医学
CiteScore
6.00
自引率
9.70%
发文量
479
审稿时长
51 days
期刊介绍: Nuclear Medicine and Biology publishes original research addressing all aspects of radiopharmaceutical science: synthesis, in vitro and ex vivo studies, in vivo biodistribution by dissection or imaging, radiopharmacology, radiopharmacy, and translational clinical studies of new targeted radiotracers. The importance of the target to an unmet clinical need should be the first consideration. If the synthesis of a new radiopharmaceutical is submitted without in vitro or in vivo data, then the uniqueness of the chemistry must be emphasized. These multidisciplinary studies should validate the mechanism of localization whether the probe is based on binding to a receptor, enzyme, tumor antigen, or another well-defined target. The studies should be aimed at evaluating how the chemical and radiopharmaceutical properties affect pharmacokinetics, pharmacodynamics, or therapeutic efficacy. Ideally, the study would address the sensitivity of the probe to changes in disease or treatment, although studies validating mechanism alone are acceptable. Radiopharmacy practice, addressing the issues of preparation, automation, quality control, dispensing, and regulations applicable to qualification and administration of radiopharmaceuticals to humans, is an important aspect of the developmental process, but only if the study has a significant impact on the field. Contributions on the subject of therapeutic radiopharmaceuticals also are appropriate provided that the specificity of labeled compound localization and therapeutic effect have been addressed.
期刊最新文献
225Aс/213Bi generator for direct synthesis of 213Bi-labeled bioconjugates Evaluation of chelating agents based on pyridine-azacrown compounds H4PATA, PATAM, and H4PATPA for 68Ga and 177Lu In vitro and in vivo study of 221Fr and 213Bi progeny release from the 225Ac-labelled TiO2 nanoparticles The potential of targeted radionuclide therapy to treat hypoxic tumor cells New prospects for 89Zr-immuno-PET in brain applications – Alpha-synucleinopathies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1