利用量子发射环实现高效能量传输和捕获

Raphael Holzinger, Jonah S. Peter, Stefan Ostermann, Helmut Ritsch, and Susanne Yelin
{"title":"利用量子发射环实现高效能量传输和捕获","authors":"Raphael Holzinger, Jonah S. Peter, Stefan Ostermann, Helmut Ritsch, and Susanne Yelin","doi":"10.1364/opticaq.510021","DOIUrl":null,"url":null,"abstract":"Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.","PeriodicalId":501828,"journal":{"name":"Optica Quantum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing quantum emitter rings for efficient energy transport and trapping\",\"authors\":\"Raphael Holzinger, Jonah S. Peter, Stefan Ostermann, Helmut Ritsch, and Susanne Yelin\",\"doi\":\"10.1364/opticaq.510021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.\",\"PeriodicalId\":501828,\"journal\":{\"name\":\"Optica Quantum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/opticaq.510021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/opticaq.510021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在弱光条件下高效传输和收集激发能量是自然界和量子技术的一个重要过程。在这里,我们从量子光学的角度阐述了两级量子发射器配置中的激发能量传输,并特别强调了效率和对无序的鲁棒性。我们研究了一种具有亚波长间距的发射环周期性几何结构,在这种结构中,由于近场偶极子-偶极子相互作用,出现了集体电子态。该系统产生的集体亚辐射态特别适合于激发传输,并能防止能量无序和辐射退相干。将环形几何结构与其他配置进行比较后发现,前者能更有效地吸收、传输和捕获入射光。由于我们的研究结果与量子发射器的具体选择无关,因此它们指出了具有卓越光子传输特性的量子技术的一般设计原则,并可能阐明导致自然光收集系统高效能量传输效率的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing quantum emitter rings for efficient energy transport and trapping
Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shaping entangled photons through arbitrary scattering media using an advanced wave beacon High-dimensional quantum correlation measurements with an adaptively gated hybrid single-photon camera Toward heralded distribution of polarization entanglement Distribution of telecom entangled photons through a 7.7 km antiresonant hollow-core fiber Multifold enhancement of quantum SNR by using an EMCCD as a photon number resolving device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1