{"title":"通风不足的大型环境中的水池火灾:使用 OpenFOAM 进行实验分析和数值模拟","authors":"Marco Cavazzuti, Paolo Tartarini","doi":"10.1007/s10694-024-01554-4","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental analyses and numerical simulations are carried out on a test case involving an heptane pool fire within a large under-ventilated environment. During the experiments, the temperature history at several locations within the room is monitored by means of thermocouples, and the fire radiative heat transfer estimated through a plate thermocouple. The experimental layout is then replicated numerically and tested using OpenFOAM CFD code. The study is a preliminary analysis performed for code validation purposes on a full-scale fire scenario. The results of the simulations are compared to the experimental results and critically analysed, finding a reasonable agreement overall. Critical issues in fire modelling are also highlighted. In fact, due to the problem complexity and the limitations of the numerical models available some important aspect that can significantly influence the outcome of the simulations must be calibrated a posteriori, somewhat limiting the general predictive applicability of the fire models. Primarily, these are the heat release rate history, the combustion efficiency, and, to a lesser extent, the convective heat transfer boundary condition at the wall.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1891 - 1915"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01554-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Pool Fires Within a Large Under-Ventilated Environment: Experimental Analysis and Numerical Simulation Using OpenFOAM\",\"authors\":\"Marco Cavazzuti, Paolo Tartarini\",\"doi\":\"10.1007/s10694-024-01554-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental analyses and numerical simulations are carried out on a test case involving an heptane pool fire within a large under-ventilated environment. During the experiments, the temperature history at several locations within the room is monitored by means of thermocouples, and the fire radiative heat transfer estimated through a plate thermocouple. The experimental layout is then replicated numerically and tested using OpenFOAM CFD code. The study is a preliminary analysis performed for code validation purposes on a full-scale fire scenario. The results of the simulations are compared to the experimental results and critically analysed, finding a reasonable agreement overall. Critical issues in fire modelling are also highlighted. In fact, due to the problem complexity and the limitations of the numerical models available some important aspect that can significantly influence the outcome of the simulations must be calibrated a posteriori, somewhat limiting the general predictive applicability of the fire models. Primarily, these are the heat release rate history, the combustion efficiency, and, to a lesser extent, the convective heat transfer boundary condition at the wall.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"60 3\",\"pages\":\"1891 - 1915\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10694-024-01554-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-024-01554-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01554-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Pool Fires Within a Large Under-Ventilated Environment: Experimental Analysis and Numerical Simulation Using OpenFOAM
Experimental analyses and numerical simulations are carried out on a test case involving an heptane pool fire within a large under-ventilated environment. During the experiments, the temperature history at several locations within the room is monitored by means of thermocouples, and the fire radiative heat transfer estimated through a plate thermocouple. The experimental layout is then replicated numerically and tested using OpenFOAM CFD code. The study is a preliminary analysis performed for code validation purposes on a full-scale fire scenario. The results of the simulations are compared to the experimental results and critically analysed, finding a reasonable agreement overall. Critical issues in fire modelling are also highlighted. In fact, due to the problem complexity and the limitations of the numerical models available some important aspect that can significantly influence the outcome of the simulations must be calibrated a posteriori, somewhat limiting the general predictive applicability of the fire models. Primarily, these are the heat release rate history, the combustion efficiency, and, to a lesser extent, the convective heat transfer boundary condition at the wall.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.