{"title":"基于共识的混码文本机器翻译","authors":"Sainik Kumar Mahata, Dipankar Das, Sivaji Bandyopadhyay","doi":"10.1145/3628427","DOIUrl":null,"url":null,"abstract":"<p>Multilingualism in India is widespread due to its long history of foreign acquaintances. This leads to the presence of an audience familiar with conversing using more than one language. Additionally, due to the social media boom, the usage of multiple languages to communicate has become extensive. Hence, the need for a translation system that can serve the novice and monolingual user is the need of the hour. Such translation systems can be developed by methods such as statistical machine translation and neural machine translation, where each approach has its advantages as well as disadvantages. In addition, the parallel corpus needed to build a translation system, with code-mixed data, is not readily available. In the present work, we present two translation frameworks that can leverage the individual advantages of these pre-existing approaches by building an ensemble model that takes a consensus of the final outputs of the preceding approaches and generates the target output. The developed models were used for translating English-Bengali code-mixed data (written in Roman script) into their equivalent monolingual Bengali instances. A code-mixed to monolingual parallel corpus was also developed to train the preceding systems. Empirical results show improved BLEU and TER scores of 17.23 and 53.18 and 19.12 and 51.29, respectively, for the developed frameworks.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus-Based Machine Translation for Code-Mixed Texts\",\"authors\":\"Sainik Kumar Mahata, Dipankar Das, Sivaji Bandyopadhyay\",\"doi\":\"10.1145/3628427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multilingualism in India is widespread due to its long history of foreign acquaintances. This leads to the presence of an audience familiar with conversing using more than one language. Additionally, due to the social media boom, the usage of multiple languages to communicate has become extensive. Hence, the need for a translation system that can serve the novice and monolingual user is the need of the hour. Such translation systems can be developed by methods such as statistical machine translation and neural machine translation, where each approach has its advantages as well as disadvantages. In addition, the parallel corpus needed to build a translation system, with code-mixed data, is not readily available. In the present work, we present two translation frameworks that can leverage the individual advantages of these pre-existing approaches by building an ensemble model that takes a consensus of the final outputs of the preceding approaches and generates the target output. The developed models were used for translating English-Bengali code-mixed data (written in Roman script) into their equivalent monolingual Bengali instances. A code-mixed to monolingual parallel corpus was also developed to train the preceding systems. Empirical results show improved BLEU and TER scores of 17.23 and 53.18 and 19.12 and 51.29, respectively, for the developed frameworks.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3628427\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3628427","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Consensus-Based Machine Translation for Code-Mixed Texts
Multilingualism in India is widespread due to its long history of foreign acquaintances. This leads to the presence of an audience familiar with conversing using more than one language. Additionally, due to the social media boom, the usage of multiple languages to communicate has become extensive. Hence, the need for a translation system that can serve the novice and monolingual user is the need of the hour. Such translation systems can be developed by methods such as statistical machine translation and neural machine translation, where each approach has its advantages as well as disadvantages. In addition, the parallel corpus needed to build a translation system, with code-mixed data, is not readily available. In the present work, we present two translation frameworks that can leverage the individual advantages of these pre-existing approaches by building an ensemble model that takes a consensus of the final outputs of the preceding approaches and generates the target output. The developed models were used for translating English-Bengali code-mixed data (written in Roman script) into their equivalent monolingual Bengali instances. A code-mixed to monolingual parallel corpus was also developed to train the preceding systems. Empirical results show improved BLEU and TER scores of 17.23 and 53.18 and 19.12 and 51.29, respectively, for the developed frameworks.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.