Chuang Lin , Ziwei Cui , Chen Chen , Yanhong Liu , Chen Chen , Ning Jiang
{"title":"用于表面肌电图分解的快速梯度卷积核补偿方法","authors":"Chuang Lin , Ziwei Cui , Chen Chen , Yanhong Liu , Chen Chen , Ning Jiang","doi":"10.1016/j.jelekin.2024.102869","DOIUrl":null,"url":null,"abstract":"<div><p>Decomposition of EMG signals provides the decoding of motor unit (MU) discharge timings. In this study, we propose a fast gradient convolution kernel compensation (fgCKC) decomposition algorithm for high-density surface EMG decomposition and apply it to an offline and real-time estimation of MU spike trains. We modified the calculation of the cross-correlation vectors to improve the calculation efficiency of the gradient convolution kernel compensation (gCKC) algorithm. Specifically, the new fgCKC algorithm considers the past gradient in addition to the current gradient. Furthermore, the EMG signals are divided by sliding windows to simulate real-time decomposition, and the proposed algorithm was validated on simulated and experimental signals. In the offline decomposition, fgCKC has the same robustness as gCKC, with sensitivity differences of 2.6 ± 1.3 % averaged across all trials and subjects. Nevertheless, depending on the number of MUs and the signal-to-noise ratio of signals, fgCKC is approximately 3 times faster than gCKC. In the real-time part, the processing only needed 240 <em>ms</em> average per window of EMG signals on a regular personal computer (IIntel(R) Core(TM) i5-12490F 3 GHz, 16 GB memory). These results indicate that fgCKC achieves real-time decomposition by significantly reducing processing time, providing more possibilities for non-invasive neuronal behavior research.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"76 ","pages":"Article 102869"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast gradient convolution kernel compensation method for surface electromyogram decomposition\",\"authors\":\"Chuang Lin , Ziwei Cui , Chen Chen , Yanhong Liu , Chen Chen , Ning Jiang\",\"doi\":\"10.1016/j.jelekin.2024.102869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decomposition of EMG signals provides the decoding of motor unit (MU) discharge timings. In this study, we propose a fast gradient convolution kernel compensation (fgCKC) decomposition algorithm for high-density surface EMG decomposition and apply it to an offline and real-time estimation of MU spike trains. We modified the calculation of the cross-correlation vectors to improve the calculation efficiency of the gradient convolution kernel compensation (gCKC) algorithm. Specifically, the new fgCKC algorithm considers the past gradient in addition to the current gradient. Furthermore, the EMG signals are divided by sliding windows to simulate real-time decomposition, and the proposed algorithm was validated on simulated and experimental signals. In the offline decomposition, fgCKC has the same robustness as gCKC, with sensitivity differences of 2.6 ± 1.3 % averaged across all trials and subjects. Nevertheless, depending on the number of MUs and the signal-to-noise ratio of signals, fgCKC is approximately 3 times faster than gCKC. In the real-time part, the processing only needed 240 <em>ms</em> average per window of EMG signals on a regular personal computer (IIntel(R) Core(TM) i5-12490F 3 GHz, 16 GB memory). These results indicate that fgCKC achieves real-time decomposition by significantly reducing processing time, providing more possibilities for non-invasive neuronal behavior research.</p></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"76 \",\"pages\":\"Article 102869\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641124000130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A fast gradient convolution kernel compensation method for surface electromyogram decomposition
Decomposition of EMG signals provides the decoding of motor unit (MU) discharge timings. In this study, we propose a fast gradient convolution kernel compensation (fgCKC) decomposition algorithm for high-density surface EMG decomposition and apply it to an offline and real-time estimation of MU spike trains. We modified the calculation of the cross-correlation vectors to improve the calculation efficiency of the gradient convolution kernel compensation (gCKC) algorithm. Specifically, the new fgCKC algorithm considers the past gradient in addition to the current gradient. Furthermore, the EMG signals are divided by sliding windows to simulate real-time decomposition, and the proposed algorithm was validated on simulated and experimental signals. In the offline decomposition, fgCKC has the same robustness as gCKC, with sensitivity differences of 2.6 ± 1.3 % averaged across all trials and subjects. Nevertheless, depending on the number of MUs and the signal-to-noise ratio of signals, fgCKC is approximately 3 times faster than gCKC. In the real-time part, the processing only needed 240 ms average per window of EMG signals on a regular personal computer (IIntel(R) Core(TM) i5-12490F 3 GHz, 16 GB memory). These results indicate that fgCKC achieves real-time decomposition by significantly reducing processing time, providing more possibilities for non-invasive neuronal behavior research.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.