四维支撑下地下围岩的蠕变变形与能量开发研究

Zhanguo Ma, Junyu Sun, Peng Gong, Pengfei Yan, Nan Cui, Ruichong Zhang
{"title":"四维支撑下地下围岩的蠕变变形与能量开发研究","authors":"Zhanguo Ma,&nbsp;Junyu Sun,&nbsp;Peng Gong,&nbsp;Pengfei Yan,&nbsp;Nan Cui,&nbsp;Ruichong Zhang","doi":"10.1002/dug2.12078","DOIUrl":null,"url":null,"abstract":"<p>There is an urgent need to develop optimal solutions for deformation control of deep high-stress roadways, one of the critical problems in underground engineering. The previously proposed four-dimensional support (hereinafter 4D support), as a new support technology, can set the roadway surrounding rock under three-dimensional pressure in the new balanced structure, and prevent instability of surrounding rock in underground engineering. However, the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown. This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development. The elastic strain energy was analyzed using the program redeveloped in FLAC<sup>3D</sup>. The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m. With the increase of roadway depth, 4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock. Further, 4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases. 4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months. As confirmed by in situ monitoring results, 4D support is more effective for the long-term stability control of surrounding rock than conventional support.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"3 1","pages":"25-38"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12078","citationCount":"0","resultStr":"{\"title\":\"Study on creep deformation and energy development of underground surrounding rock under four-dimensional support\",\"authors\":\"Zhanguo Ma,&nbsp;Junyu Sun,&nbsp;Peng Gong,&nbsp;Pengfei Yan,&nbsp;Nan Cui,&nbsp;Ruichong Zhang\",\"doi\":\"10.1002/dug2.12078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is an urgent need to develop optimal solutions for deformation control of deep high-stress roadways, one of the critical problems in underground engineering. The previously proposed four-dimensional support (hereinafter 4D support), as a new support technology, can set the roadway surrounding rock under three-dimensional pressure in the new balanced structure, and prevent instability of surrounding rock in underground engineering. However, the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown. This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development. The elastic strain energy was analyzed using the program redeveloped in FLAC<sup>3D</sup>. The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m. With the increase of roadway depth, 4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock. Further, 4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases. 4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months. As confirmed by in situ monitoring results, 4D support is more effective for the long-term stability control of surrounding rock than conventional support.</p>\",\"PeriodicalId\":100363,\"journal\":{\"name\":\"Deep Underground Science and Engineering\",\"volume\":\"3 1\",\"pages\":\"25-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.12078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep Underground Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dug2.12078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Underground Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dug2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深部高应力巷道的变形控制是地下工程的关键问题之一,亟需制定最佳解决方案。此前提出的四维支护(以下简称四维支护)作为一种新型支护技术,可将巷道围岩置于三维压力下的新型平衡结构中,防止地下工程中围岩失稳。然而,巷道深度和蠕变变形对 4D 支护围岩的影响尚不清楚。本研究通过分析能量发展,研究了巷道深度和蠕变变形时间对围岩失稳的影响。使用在 FLAC3D 中重新开发的程序对弹性应变能量进行了分析。数值模拟结果表明,4D 顶板支护与传统边撑相结合的支护模式非常适用于巷道深度超过 520 米的围岩稳定性控制。随着巷道深度的增加,4D 支护能有效抑制围岩塑性变形的面积和深度。此外,随着蠕变变形时间的增加,4D 支护还能限制弹性应变能的累积范围和速率。4D 支撑能有效减少巷道围岩的塑性变形,并能在 6 个月的长变形期内保持稳定。现场监测结果证实,4D 支护比常规支护更能有效控制围岩的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on creep deformation and energy development of underground surrounding rock under four-dimensional support

There is an urgent need to develop optimal solutions for deformation control of deep high-stress roadways, one of the critical problems in underground engineering. The previously proposed four-dimensional support (hereinafter 4D support), as a new support technology, can set the roadway surrounding rock under three-dimensional pressure in the new balanced structure, and prevent instability of surrounding rock in underground engineering. However, the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown. This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development. The elastic strain energy was analyzed using the program redeveloped in FLAC3D. The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m. With the increase of roadway depth, 4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock. Further, 4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases. 4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months. As confirmed by in situ monitoring results, 4D support is more effective for the long-term stability control of surrounding rock than conventional support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Two-year growth of Deep Underground Science and Engineering: A perspective Acknowledgment of reviewers A review of mechanical deformation and seepage mechanism of rock with filled joints Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1