首页 > 最新文献

Deep Underground Science and Engineering最新文献

英文 中文
Acknowledgement of reviewers 审稿人致谢
IF 5 Pub Date : 2025-12-02 DOI: 10.1002/dug2.70072
<p>On behalf of the Editorial Board of <i>Deep Underground Science and Engineering</i> (DUSE), we sincerely thank all reviewers for your dedicated service in 2025.</p><p>Your timely, thoughtful, and expert reviews have been essential to upholding the quality and integrity of the journal. With your support and contributions, DUSE has achieved a major milestone this year—receiving its first Impact Factor of 5.0, ranking 13th out of 65 journals in its category, and earning Q1 status in the Journal Citation Reports (JCR).</p><p>The following individuals provided peer review services in 2025. We have done our best to ensure the accuracy of this list and apologize for any omissions or errors.</p><p>Abdulaziz Almakimi</p><p>Ni An</p><p>Bhavesh Banjare</p><p>Achinta Bera</p><p>Emilio Bilotta</p><p>Michael Brammer</p><p>Kai Bröker</p><p>Jianchao Cai</p><p>Mahanta Bankim Chandra</p><p>Jueliang Chen</p><p>Shi Chen</p><p>Yuedu Chen</p><p>Zhanbo Cheng</p><p>Cristina Maria Nobre Sobral De Cruz</p><p>Guanglei Cui</p><p>Lan Cui</p><p>Zhenxue Dai</p><p>Bozhi Deng</p><p>Xiang Ding</p><p>Feng Du</p><p>Hongyu Duan</p><p>Agbasi Okechukwu Ebuka</p><p>Justin Ezekiel</p><p>Hongyun Fan</p><p>Zhiqiang Fan</p><p>Qian Fang</p><p>Roohollah Shirani Faradonbeh</p><p>Xianhui Feng</p><p>Xiaowei Feng</p><p>Jinwei Fu</p><p>Shenguang Fu</p><p>Yunfeng Ge</p><p>Jishi Geng</p><p>Bin Gong</p><p>Chenjie Gong</p><p>Fengqiang Gong</p><p>Qiuming Gong</p><p>Yonggang Gou</p><p>Kai Guan</p><p>Dogukan Guner</p><p>Hongjun Guo</p><p>Tiankui Guo</p><p>Weiyao Guo</p><p>Zhenbang Guo</p><p>Naderan Hamid</p><p>Dongya Han</p><p>Jianyong Han</p><p>Xingbo Han</p><p>Xianjie Hao</p><p>S. Harikrishnan</p><p>Fulian He</p><p>Dawei Hu</p><p>Jilei Hu</p><p>Lihua Hu</p><p>Liangchao Huang</p><p>Tianming Huang</p><p>Xin Huang</p><p>Avanaki Mohammad Jamshidi</p><p>Koochul Ji</p><p>Liangliang Jiang</p><p>Wencheng Jin</p><p>Wei Ju</p><p>Marat Khakimyanov</p><p>Manoj Khandelwal</p><p>Xiangguo Kong</p><p>Lei Kou</p><p>Biao Li</p><p>Bo Li</p><p>Diquan Li</p><p>Diyuan Li</p><p>Hang Li</p><p>Hua Li</p><p>Huaibin Li</p><p>Lei Li</p><p>Xinping Li</p><p>Yongyi Li</p><p>Zhaolin Li</p><p>Zhenlei Li</p><p>Zhongbei Li</p><p>Zhiyi Liao</p><p>Qibin Lin</p><p>Gang Liu</p><p>Wei Liu</p><p>Xige Liu</p><p>Xuesheng Liu</p><p>Yunlong Liu</p><p>Jianguo Lu</p><p>Yimin Lu</p><p>Qiao Lü</p><p>Bingshan Ma</p><p>Tianshou Ma</p><p>Zhaoyang Ma</p><p>Fabio Madonna</p><p>Javier Menendez</p><p>Fanzhen Meng</p><p>Tao Meng</p><p>Shuting Miao</p><p>Pinqiang Mo</p><p>Arif Ali Baig Moghal</p><p>Mehrad Mohammad</p><p>Wenqiang Mou</p><p>Nair Arun Narayanan</p><p>Hongyang Ni</p><p>Jianguo Ning</p><p>Joseph Nyangon</p><p>Xiaodong Pan</p><p>Chunde Piao</p><p>Deyu Qian</p><p>Junling Qiu</p><p>Liming Qiu</p><p>Qingdong Qu</p><p>Ali Ranjbar</p><p>Dwarikanath Ratha</p><p>Bharat Rattan</p><p>Hafeezur Rehman</p><p>Lifan Rong</p><p>Yaser Sabzehmeidani</p><p>Delei Shang</p><p>Jianfu Shao</p><p>Yupeng Shen</p><p>Xilin Shi</p><p>Yue Shi</p><p>Shahe Shnorhokian</p><p
我们谨代表《地下深层科学与工程》( Deep Underground Science and Engineering,简称DUSE)编辑部衷心感谢各位审稿人在2025年的尽心服务。您及时、周到、专业的审稿对维护期刊的质量和诚信至关重要。在您的支持和贡献下,DUSE今年取得了一个重要的里程碑——影响因子首次达到5.0,在同类65种期刊中排名第13位,并在期刊引文报告(JCR)中排名第一。以下人员在2025年提供了同行评议服务。我们已尽最大努力确保此列表的准确性,并对任何遗漏或错误表示歉意。Abdulaziz AlmakimiNi AnBhavesh BanjareAchinta BeraEmilio bilottammichael BrammerKai BrökerJianchao CaiMahanta Bankim ChandraJueliang ChenShi ChenYuedu ChenZhanbo ChengCristina Maria Nobre Sobral De CruzGuanglei quilan quizhenxue DaiBozhi邓翔DingFeng DuHongyu DuanAgbasi Okechukwu EbukaJustin EzekielHongyun樊志强樊谦方roohollah Shirani faradonh贤慧冯晓伟冯金伟富神光傅云峰葛吉士耿宾GongChenjie GongFengqiang GongQiuming GongYonggang GouKai关道国侃,郭彦宏,郭天奎,郭伟尧,郭振邦,郭乃德,韩仲亚,韩建勇,韩兴波,韩贤杰,郝。HarikrishnanFulian何大伟胡继磊胡立华胡良超黄天明黄新黄天aki Mohammad JamshidiKoochul jiliangjiangwencheng JinWei姜文成姜文成JinWei jmarat KhakimyanovManoj KhandelwalXiangguo孔磊口彪李波李迪全李迪元李航李华李怀滨李磊李新平李永毅李兆林李振磊李中北李志毅廖启斌临岗刘伟刘锡戈刘学升刘云龙刘志民路桥 bingshan田田寿马昭阳maabio MadonnaJavier MenendezFanzhen孟涛孟淑婷miopinqiang MoArif Ali Baig MoghalMehrad MohammadWenqiang MouNair Arun NarayananHongyang NiJianguo NingJoseph nyangonxia冬PanChunde PiaoDeyu钱俊玲邱丽明邱庆东QuAli RanjbarDwarikanath RathaBharat rattanhafezur RehmanLifan RongYaser SabzehmeidaniDelei尚建富邵玉鹏沈锡林石岳石沙江光耀skrzysztof SkrzypkowskiDanqing宋大昭宋家成宋文强SousaHong SuShanjie SuLi唐吉州唐新伟唐家驹田家驹万长胜王道兵王家驹王飞王福永王海军王家民王建国王军王亮王路祥王文栋王文松王晓王文学王桥文焕宇武逵武凯宗夏春雷新陈旭业双徐友林徐坤明严福建杨海清杨建华杨文东杨晓涵杨志烨烨一马一马一超袁仲奇岳陵平曾世川张崇远张桂民张建智张凯张科,张立新,张世怀,张伟强,张文刚,张一怀,张泽天,张正虎,张春峰,赵金鹏,赵昌,周超,周健,周书伟,周仙奇,周建波,朱春,朱海燕,朱春江,我们感谢你们每一位对学术卓越的承诺,期待你们继续合作。诚挚的编委会:地下科学与工程
{"title":"Acknowledgement of reviewers","authors":"","doi":"10.1002/dug2.70072","DOIUrl":"https://doi.org/10.1002/dug2.70072","url":null,"abstract":"&lt;p&gt;On behalf of the Editorial Board of &lt;i&gt;Deep Underground Science and Engineering&lt;/i&gt; (DUSE), we sincerely thank all reviewers for your dedicated service in 2025.&lt;/p&gt;&lt;p&gt;Your timely, thoughtful, and expert reviews have been essential to upholding the quality and integrity of the journal. With your support and contributions, DUSE has achieved a major milestone this year—receiving its first Impact Factor of 5.0, ranking 13th out of 65 journals in its category, and earning Q1 status in the Journal Citation Reports (JCR).&lt;/p&gt;&lt;p&gt;The following individuals provided peer review services in 2025. We have done our best to ensure the accuracy of this list and apologize for any omissions or errors.&lt;/p&gt;&lt;p&gt;Abdulaziz Almakimi&lt;/p&gt;&lt;p&gt;Ni An&lt;/p&gt;&lt;p&gt;Bhavesh Banjare&lt;/p&gt;&lt;p&gt;Achinta Bera&lt;/p&gt;&lt;p&gt;Emilio Bilotta&lt;/p&gt;&lt;p&gt;Michael Brammer&lt;/p&gt;&lt;p&gt;Kai Bröker&lt;/p&gt;&lt;p&gt;Jianchao Cai&lt;/p&gt;&lt;p&gt;Mahanta Bankim Chandra&lt;/p&gt;&lt;p&gt;Jueliang Chen&lt;/p&gt;&lt;p&gt;Shi Chen&lt;/p&gt;&lt;p&gt;Yuedu Chen&lt;/p&gt;&lt;p&gt;Zhanbo Cheng&lt;/p&gt;&lt;p&gt;Cristina Maria Nobre Sobral De Cruz&lt;/p&gt;&lt;p&gt;Guanglei Cui&lt;/p&gt;&lt;p&gt;Lan Cui&lt;/p&gt;&lt;p&gt;Zhenxue Dai&lt;/p&gt;&lt;p&gt;Bozhi Deng&lt;/p&gt;&lt;p&gt;Xiang Ding&lt;/p&gt;&lt;p&gt;Feng Du&lt;/p&gt;&lt;p&gt;Hongyu Duan&lt;/p&gt;&lt;p&gt;Agbasi Okechukwu Ebuka&lt;/p&gt;&lt;p&gt;Justin Ezekiel&lt;/p&gt;&lt;p&gt;Hongyun Fan&lt;/p&gt;&lt;p&gt;Zhiqiang Fan&lt;/p&gt;&lt;p&gt;Qian Fang&lt;/p&gt;&lt;p&gt;Roohollah Shirani Faradonbeh&lt;/p&gt;&lt;p&gt;Xianhui Feng&lt;/p&gt;&lt;p&gt;Xiaowei Feng&lt;/p&gt;&lt;p&gt;Jinwei Fu&lt;/p&gt;&lt;p&gt;Shenguang Fu&lt;/p&gt;&lt;p&gt;Yunfeng Ge&lt;/p&gt;&lt;p&gt;Jishi Geng&lt;/p&gt;&lt;p&gt;Bin Gong&lt;/p&gt;&lt;p&gt;Chenjie Gong&lt;/p&gt;&lt;p&gt;Fengqiang Gong&lt;/p&gt;&lt;p&gt;Qiuming Gong&lt;/p&gt;&lt;p&gt;Yonggang Gou&lt;/p&gt;&lt;p&gt;Kai Guan&lt;/p&gt;&lt;p&gt;Dogukan Guner&lt;/p&gt;&lt;p&gt;Hongjun Guo&lt;/p&gt;&lt;p&gt;Tiankui Guo&lt;/p&gt;&lt;p&gt;Weiyao Guo&lt;/p&gt;&lt;p&gt;Zhenbang Guo&lt;/p&gt;&lt;p&gt;Naderan Hamid&lt;/p&gt;&lt;p&gt;Dongya Han&lt;/p&gt;&lt;p&gt;Jianyong Han&lt;/p&gt;&lt;p&gt;Xingbo Han&lt;/p&gt;&lt;p&gt;Xianjie Hao&lt;/p&gt;&lt;p&gt;S. Harikrishnan&lt;/p&gt;&lt;p&gt;Fulian He&lt;/p&gt;&lt;p&gt;Dawei Hu&lt;/p&gt;&lt;p&gt;Jilei Hu&lt;/p&gt;&lt;p&gt;Lihua Hu&lt;/p&gt;&lt;p&gt;Liangchao Huang&lt;/p&gt;&lt;p&gt;Tianming Huang&lt;/p&gt;&lt;p&gt;Xin Huang&lt;/p&gt;&lt;p&gt;Avanaki Mohammad Jamshidi&lt;/p&gt;&lt;p&gt;Koochul Ji&lt;/p&gt;&lt;p&gt;Liangliang Jiang&lt;/p&gt;&lt;p&gt;Wencheng Jin&lt;/p&gt;&lt;p&gt;Wei Ju&lt;/p&gt;&lt;p&gt;Marat Khakimyanov&lt;/p&gt;&lt;p&gt;Manoj Khandelwal&lt;/p&gt;&lt;p&gt;Xiangguo Kong&lt;/p&gt;&lt;p&gt;Lei Kou&lt;/p&gt;&lt;p&gt;Biao Li&lt;/p&gt;&lt;p&gt;Bo Li&lt;/p&gt;&lt;p&gt;Diquan Li&lt;/p&gt;&lt;p&gt;Diyuan Li&lt;/p&gt;&lt;p&gt;Hang Li&lt;/p&gt;&lt;p&gt;Hua Li&lt;/p&gt;&lt;p&gt;Huaibin Li&lt;/p&gt;&lt;p&gt;Lei Li&lt;/p&gt;&lt;p&gt;Xinping Li&lt;/p&gt;&lt;p&gt;Yongyi Li&lt;/p&gt;&lt;p&gt;Zhaolin Li&lt;/p&gt;&lt;p&gt;Zhenlei Li&lt;/p&gt;&lt;p&gt;Zhongbei Li&lt;/p&gt;&lt;p&gt;Zhiyi Liao&lt;/p&gt;&lt;p&gt;Qibin Lin&lt;/p&gt;&lt;p&gt;Gang Liu&lt;/p&gt;&lt;p&gt;Wei Liu&lt;/p&gt;&lt;p&gt;Xige Liu&lt;/p&gt;&lt;p&gt;Xuesheng Liu&lt;/p&gt;&lt;p&gt;Yunlong Liu&lt;/p&gt;&lt;p&gt;Jianguo Lu&lt;/p&gt;&lt;p&gt;Yimin Lu&lt;/p&gt;&lt;p&gt;Qiao Lü&lt;/p&gt;&lt;p&gt;Bingshan Ma&lt;/p&gt;&lt;p&gt;Tianshou Ma&lt;/p&gt;&lt;p&gt;Zhaoyang Ma&lt;/p&gt;&lt;p&gt;Fabio Madonna&lt;/p&gt;&lt;p&gt;Javier Menendez&lt;/p&gt;&lt;p&gt;Fanzhen Meng&lt;/p&gt;&lt;p&gt;Tao Meng&lt;/p&gt;&lt;p&gt;Shuting Miao&lt;/p&gt;&lt;p&gt;Pinqiang Mo&lt;/p&gt;&lt;p&gt;Arif Ali Baig Moghal&lt;/p&gt;&lt;p&gt;Mehrad Mohammad&lt;/p&gt;&lt;p&gt;Wenqiang Mou&lt;/p&gt;&lt;p&gt;Nair Arun Narayanan&lt;/p&gt;&lt;p&gt;Hongyang Ni&lt;/p&gt;&lt;p&gt;Jianguo Ning&lt;/p&gt;&lt;p&gt;Joseph Nyangon&lt;/p&gt;&lt;p&gt;Xiaodong Pan&lt;/p&gt;&lt;p&gt;Chunde Piao&lt;/p&gt;&lt;p&gt;Deyu Qian&lt;/p&gt;&lt;p&gt;Junling Qiu&lt;/p&gt;&lt;p&gt;Liming Qiu&lt;/p&gt;&lt;p&gt;Qingdong Qu&lt;/p&gt;&lt;p&gt;Ali Ranjbar&lt;/p&gt;&lt;p&gt;Dwarikanath Ratha&lt;/p&gt;&lt;p&gt;Bharat Rattan&lt;/p&gt;&lt;p&gt;Hafeezur Rehman&lt;/p&gt;&lt;p&gt;Lifan Rong&lt;/p&gt;&lt;p&gt;Yaser Sabzehmeidani&lt;/p&gt;&lt;p&gt;Delei Shang&lt;/p&gt;&lt;p&gt;Jianfu Shao&lt;/p&gt;&lt;p&gt;Yupeng Shen&lt;/p&gt;&lt;p&gt;Xilin Shi&lt;/p&gt;&lt;p&gt;Yue Shi&lt;/p&gt;&lt;p&gt;Shahe Shnorhokian&lt;/p&gt;&lt;p","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"816-817"},"PeriodicalIF":5.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in underground large-scale energy storage technologies for new production chains 新型生产链地下大规模储能技术进展
IF 5 Pub Date : 2025-11-23 DOI: 10.1002/dug2.70071
Jianguo Wang, Chunfai Leung
<p><i>Deep Underground Science and Engineering</i> (DUSE) is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies. This issue comprises 19 articles: six from our special issue “Underground large-scale energy storage technologies in the context of carbon neutrality”, 11 from regular submissions on related topics, and two from early regular submissions. These contributions include five review articles, one perspective article, and 13 research articles. The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.</p><p>Global energy demand has experienced steady growth in recent decades. While renewable energy capacity has expanded exponentially, fossil fuels remain the dominant energy source, currently accounting for approximately 80% of global primary energy consumption. In major economies, renewables now contribute over 20% of the energy mix. The dual challenges of meeting rising energy demand and reducing greenhouse gas emissions are driving the global transition toward renewable sources. However, the inherent intermittency and instability of renewables—such as solar, wind, marine, geothermal, and biomass energy—create a dynamic imbalance between energy supply and demand. To address this, technologies like power-to-gas, power-to-liquids, and solar-to-fuel have been developed. Among these, energy storage serves as a critical buffer. Energy storage technologies facilitate the spatiotemporal redistribution of energy, maintaining a dynamic balance between generation and demand. This enables higher penetration of renewable sources, improves power system stability, enhances overall efficiency, and reduces the environmental impact of energy generation.</p><p>Large-scale energy storage is essential for a better integration of renewable sources, balancing supply and demand, enhancing energy security, improving grid management, and advancing the transition to a low-carbon economy. Underground reservoirs offer significant potential for storing large volumes of fluids with minimal environmental and societal impact, thereby making large-scale energy storage feasible. Viable underground energy storage technologies include compressed air energy storage (CAES), underground pumped hydro storage (UPHS), underground thermal energy storage (UTES), underground gas storage (UGS), and underground hydrogen storage (UHS). These technologies require suitable geological formations, such depleted hydrocarbon reservoirs, porous aquifers, salt formations, engineered rock caverns, and abandoned mines, each forming distinct production chains.</p><p>A perspective article entitled “A novel technological conception of integrated large-scale CO<sub>2</sub> storage, water recovery, geothermal extraction, hydrogen production, and energy storage” (DOI: 10.1002/dug2.70055) discusses the integration of u
深地下科学与工程(DUSE)很高兴地介绍这一期特刊,重点介绍地下大规模储能技术的最新进展。本期共有19篇文章,其中6篇来自我们的特刊《碳中和背景下的地下大规模储能技术》,11篇来自相关主题的定期投稿,2篇来自早期的定期投稿。这些贡献包括5篇综述文章,1篇观点文章和13篇研究文章。本期和以后各期的数量增加反映了新闻部致力于解决提交量迅速增长和目前高质量论文积压的问题。近几十年来,全球能源需求稳步增长。虽然可再生能源产能呈指数级增长,但化石燃料仍是主要能源,目前约占全球一次能源消费的80%。在主要经济体中,可再生能源在能源结构中的比重已超过20%。满足不断增长的能源需求和减少温室气体排放的双重挑战正在推动全球向可再生能源转型。然而,可再生能源(如太阳能、风能、海洋能、地热能和生物质能)固有的间歇性和不稳定性造成了能源供需之间的动态不平衡。为了解决这个问题,诸如电力制气、电力制油和太阳能制燃料等技术已经被开发出来。其中,储能是一个关键的缓冲。储能技术促进了能源的时空再分配,维持了发电和需求之间的动态平衡。这使得可再生能源的渗透率更高,提高了电力系统的稳定性,提高了整体效率,并减少了能源生产对环境的影响。大规模储能对于更好地整合可再生能源、平衡供需、加强能源安全、改善电网管理、推进向低碳经济转型至关重要。地下水库在储存大量流体方面具有巨大的潜力,对环境和社会的影响最小,从而使大规模能源储存成为可能。可行的地下储能技术包括压缩空气储能(CAES)、地下抽水蓄能(UPHS)、地下热能储能(UTES)、地下储气(UGS)和地下储氢(UHS)。这些技术需要合适的地质构造,如枯竭的油气储层、多孔含水层、盐层、工程岩洞和废弃矿山,每一个都形成了不同的生产链。一篇题为“集成大规模二氧化碳储存、水回收、地热开采、制氢和能源储存的新技术概念”的观点文章(DOI: 10.1002/dug2.70055)讨论了地下能源储存与碳捕获、利用和储存(CCUS)生产链的整合。本文提出了一个由上游CO2-enhanced water recovery (CO2-EWR)、中游绿色制氢和下游能源利用三个相互关联的模块组成的集成系统。这代表了一种通过二氧化碳再利用进行地下能源储存的新技术概念。选择合适的地下储能技术取决于场地的具体筛选。必须建立技术标准来评估每种油藏类型和技术的可行性、安全性和经济可行性。一篇题为“压缩空气储能系统地下人工室建设中的关键技术”的评论文章(DOI: 10.1002/dug2.70064)提供了此类评估的示例。不同的储能设施面临着不同的挑战。例如,“用于CO2地质封存和一致性控制的凝胶:对行为和性能的系统回顾”(DOI: 10.1002/dug2.70027)综述了CO2地质封存中的密封问题。另一篇综述探讨了深层油藏流动和输送模拟的挑战、模型和算法(DOI: 10.1002/dug2.70006)。进一步的综述讨论了人工智能在热干岩地热能提取中的应用(DOI: 10.1002/dug2.70018),概述了北非地热资源的勘探和开发(DOI: 10.1002/dug2.70042)。总的来说,这些综述综合了地下储能的关键知识点。渗流与扩散:《废弃煤矿采空区CO2固存扩散与迁移规律研究》(DOI: 10.1002/dug2.70002)通过等温吸附试验研究了CO2在残煤中的吸附特性,可以准确计算吸附CO2体积。 研究了CO2在煤基质中的扩散行为,观察了优先流,为评价采空区CO2储存量提供了实验和理论基础。洞室泄漏安全:泄漏是储能洞室的关键安全问题。文章《盐穴储氢泄漏风险评估体系》(DOI: 10.1002/dug2.70011)综合考虑盐穴独特的结构方面和储氢固有的挑战,对泄漏风险进行了综合评价,并提出了相应的风险控制和防范措施。膨润土性能:在高放射性废物深层地质处置的背景下,膨润土是关键的回填缓冲材料。“高温对膨润土膨胀压力的影响”(DOI: 10.1002/dug2.12145)实验研究了高温下膨润土的性能。结果表明,温度升高会降低膨胀压力,并伴随着粘土微观结构内部孔隙水的交换。水从微孔向大孔的转移是高密度膨润土的关键控制过程,影响膨润土的膨胀压力和导水率。CO2的固存与再利用:该主题以四篇文章为代表,包括上述关于CO2在采空区扩散的研究。其他贡献包括使用相场法模拟二氧化碳-水两相流体驱替(DOI: 10.1002/dug2.70019),评估中国苏北盆地二氧化碳增强采油中的二氧化碳储存潜力(DOI: 10.1002/dug2.12150),以及二氧化碳注入引起的潜在井损伤的热-液压-机械耦合分析(DOI: 10.1002/dug2.70014)。这些研究探讨了多孔介质中不同生产链的流动机制、诱导损伤和不稳定性。LRC洞室CAES:本节包括三篇研究文章。其中一项研究是对废弃煤矿中由马蹄形巷道改造而成的CAES洞穴的稳定性进行研究,探索了初始破坏效应和形状变化(DOI: 10.1002/dug2.70041)。另一篇文章提出了从开挖到CAES操作的围岩弹塑性分析(DOI: 10.1002/dug2.70062),提出了衬砌材料选择和结构设计的新方法。第三项研究考察了损伤对CAES衬砌洞室稳定性和气密性的影响(DOI: 10.1002/dug2.70066),探讨了CAES结构、岩体和运行参数之间的一致性。盐穴储存:盐穴体积大,具有天然密封能力,既适合于CAES,也适合于储氢。三篇文章讨论了相关的挑战。一项研究研究了枯竭气藏储氢过程中硫酸盐热化学还原产生的H2S,并探讨了缓解措施(DOI: 10.1002/dug2.70000)。另一项研究探讨了在盐穴内caes -热储耦合系统中使用不溶性沉积物作为储热介质的可行性(DOI: 10.1002/dug2.70056)。其余两篇研究文章《利用质量散射体进行地面隔振》(DOI: 10.1002/dug2.12130)和《含气岩-煤-岩组合结构的损伤破坏特征研究》(DOI: 10.1002/dug2.12129),报告了地面隔振的技术进展,探讨了复合岩石结构的破坏机制。新闻部高度赞赏特邀编辑为本期特刊的成功所作的努力。特邀编辑:万吉芳博士(中国能源数字科技集团有限公司深地下技术中心)、b孟副教授(中国太原科技大学)、刘伟教授(中国重庆大学)、石锡林教授(中国科学院岩土力学研究所)、Maria Jose Jurado教授(西班牙国家研究委员会巴塞罗那CSIC地球科学中心)、Reza Taherdangkoo博士(岩土工程研究所,Technische Universität Bergakademie Freiberg,德国)。本期所介绍的进展为前沿研究方向提供了宝贵的见解。人们承认,一些重要的技术,如含水层压缩空气储能、LRC洞穴储氢、CAES与抽水蓄能相结合的混合系统,并未在本系列中涵盖。编辑的目标是扩大该杂志对深层地下储能的覆盖范围,包括概念技术路线图,场地筛选,基础科学研究,新材料开发,工程实施和运营管理,从而支持每种技术的集成生产链的发展。本期的出版物为进一步的创新奠定了基础。 编辑们诚挚地邀请研究人员和行业专业人士通过持续的高质量贡献来推进这一关键领域,最终在
{"title":"Advancements in underground large-scale energy storage technologies for new production chains","authors":"Jianguo Wang,&nbsp;Chunfai Leung","doi":"10.1002/dug2.70071","DOIUrl":"https://doi.org/10.1002/dug2.70071","url":null,"abstract":"&lt;p&gt;&lt;i&gt;Deep Underground Science and Engineering&lt;/i&gt; (DUSE) is pleased to present this special issue highlighting recent advancements in underground large-scale energy storage technologies. This issue comprises 19 articles: six from our special issue “Underground large-scale energy storage technologies in the context of carbon neutrality”, 11 from regular submissions on related topics, and two from early regular submissions. These contributions include five review articles, one perspective article, and 13 research articles. The increased volume of this issue and later issues reflects DUSE's commitment to addressing the rapid growth in submissions and the current backlog of high-quality papers.&lt;/p&gt;&lt;p&gt;Global energy demand has experienced steady growth in recent decades. While renewable energy capacity has expanded exponentially, fossil fuels remain the dominant energy source, currently accounting for approximately 80% of global primary energy consumption. In major economies, renewables now contribute over 20% of the energy mix. The dual challenges of meeting rising energy demand and reducing greenhouse gas emissions are driving the global transition toward renewable sources. However, the inherent intermittency and instability of renewables—such as solar, wind, marine, geothermal, and biomass energy—create a dynamic imbalance between energy supply and demand. To address this, technologies like power-to-gas, power-to-liquids, and solar-to-fuel have been developed. Among these, energy storage serves as a critical buffer. Energy storage technologies facilitate the spatiotemporal redistribution of energy, maintaining a dynamic balance between generation and demand. This enables higher penetration of renewable sources, improves power system stability, enhances overall efficiency, and reduces the environmental impact of energy generation.&lt;/p&gt;&lt;p&gt;Large-scale energy storage is essential for a better integration of renewable sources, balancing supply and demand, enhancing energy security, improving grid management, and advancing the transition to a low-carbon economy. Underground reservoirs offer significant potential for storing large volumes of fluids with minimal environmental and societal impact, thereby making large-scale energy storage feasible. Viable underground energy storage technologies include compressed air energy storage (CAES), underground pumped hydro storage (UPHS), underground thermal energy storage (UTES), underground gas storage (UGS), and underground hydrogen storage (UHS). These technologies require suitable geological formations, such depleted hydrocarbon reservoirs, porous aquifers, salt formations, engineered rock caverns, and abandoned mines, each forming distinct production chains.&lt;/p&gt;&lt;p&gt;A perspective article entitled “A novel technological conception of integrated large-scale CO&lt;sub&gt;2&lt;/sub&gt; storage, water recovery, geothermal extraction, hydrogen production, and energy storage” (DOI: 10.1002/dug2.70055) discusses the integration of u","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"511-512"},"PeriodicalIF":5.0,"publicationDate":"2025-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of damage impact on stability and airtightness of lined rock caverns for compressed air energy storage 压缩空气储能衬砌洞室损伤对稳定性和气密性的影响研究
IF 5 Pub Date : 2025-11-04 DOI: 10.1002/dug2.70066
Hui Zhou, Shuo Zhao, Yang Gao, Muhammad Usman Azhar, Mingming Hu, Songhua Mei, Feng Xiao, Hongliang Tu

The lined rock cavern (LRC) compressed air energy storage (CAES) system is currently regarded as one of the most promising methods for large-scale energy storage. However, the safety of LRC under high internal pressure has emerged as a critical issue that restricts their development. While scholars have focused on the safety of LRC under multiphysics field coupling, few have noticed the inevitable damage sustained by the primary load-bearing components—the surrounding rock and concrete lining—under high internal pressure, compromising their strength and permeation resistance. This study investigates the impact of damage to the surrounding rock and lining concrete on the stability and airtightness of the CAES cavern. First, a damage-permeability evolution model was established by analyzing cyclic loading and unloading test data on concrete samples. Then, a thermo-hydro-mechanical damage (THM-D) coupling model for the CAES cavern was developed and validated against operational data from the Huntorf plant. The coupling responses of both the surrounding rock and lining were compared and analyzed under three different schemes of the first charging and discharging operation. The results revealed the correlation between the air temperature in the cavern and the injection rate and the uneven damage evolution of the surrounding rock and lining caused by the geostress distribution coupled with the heat transfer process. Through the analysis, a higher air injection rate causes more lining damage and air leakage, posing greater risks to engineering safety and airtightness. However, the reduction of inflation time will weaken this effect to some extent. These findings offer valuable insights into the design, construction, and safe operation of LRC compressed air energy storage systems.

衬砌岩洞压缩空气储能(CAES)系统被认为是目前最有前途的大规模储能方法之一。然而,高内压下LRC的安全性已成为制约其发展的关键问题。虽然学者们关注的是多场场耦合作用下LRC的安全性,但很少有人注意到其主要承重构件(围岩和混凝土衬砌)在高内压作用下不可避免地遭受损伤,从而影响其强度和抗渗透能力。研究了围岩和衬砌混凝土损伤对CAES洞室稳定性和气密性的影响。首先,通过分析混凝土试件的循环加卸载试验数据,建立了损伤-渗透演化模型;然后,开发了CAES洞穴的热-水-机械损伤(THM-D)耦合模型,并根据Huntorf工厂的运行数据进行了验证。对比分析了三种不同的首次装放方案下围岩与衬砌的耦合响应。研究结果揭示了洞室内空气温度与喷射速度的相关性,以及地应力分布与传热过程耦合引起的围岩和衬砌的不均匀损伤演化。通过分析,较高的注气量会导致更多的衬砌损坏和漏气,对工程安全和密封性带来更大的风险。然而,通货膨胀时间的缩短会在一定程度上削弱这种影响。这些发现为LRC压缩空气储能系统的设计、建造和安全运行提供了有价值的见解。
{"title":"Investigation of damage impact on stability and airtightness of lined rock caverns for compressed air energy storage","authors":"Hui Zhou,&nbsp;Shuo Zhao,&nbsp;Yang Gao,&nbsp;Muhammad Usman Azhar,&nbsp;Mingming Hu,&nbsp;Songhua Mei,&nbsp;Feng Xiao,&nbsp;Hongliang Tu","doi":"10.1002/dug2.70066","DOIUrl":"https://doi.org/10.1002/dug2.70066","url":null,"abstract":"<p>The lined rock cavern (LRC) compressed air energy storage (CAES) system is currently regarded as one of the most promising methods for large-scale energy storage. However, the safety of LRC under high internal pressure has emerged as a critical issue that restricts their development. While scholars have focused on the safety of LRC under multiphysics field coupling, few have noticed the inevitable damage sustained by the primary load-bearing components—the surrounding rock and concrete lining—under high internal pressure, compromising their strength and permeation resistance. This study investigates the impact of damage to the surrounding rock and lining concrete on the stability and airtightness of the CAES cavern. First, a damage-permeability evolution model was established by analyzing cyclic loading and unloading test data on concrete samples. Then, a thermo-hydro-mechanical damage (THM-D) coupling model for the CAES cavern was developed and validated against operational data from the Huntorf plant. The coupling responses of both the surrounding rock and lining were compared and analyzed under three different schemes of the first charging and discharging operation. The results revealed the correlation between the air temperature in the cavern and the injection rate and the uneven damage evolution of the surrounding rock and lining caused by the geostress distribution coupled with the heat transfer process. Through the analysis, a higher air injection rate causes more lining damage and air leakage, posing greater risks to engineering safety and airtightness. However, the reduction of inflation time will weaken this effect to some extent. These findings offer valuable insights into the design, construction, and safe operation of LRC compressed air energy storage systems.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"597-611"},"PeriodicalIF":5.0,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical technologies in the construction of underground artificial chamber for compressed air energy storage systems 压缩空气储能系统地下人工硐室施工关键技术研究
IF 5 Pub Date : 2025-10-10 DOI: 10.1002/dug2.70064
Jifang Wan, Mingyin Li, Rui Zhao, Wendong Ji, Jingcui Li, Maria J. Jurado, Yangqing Sun

Compressed air energy storage (CAES) has emerged as a grid-scale energy storage linchpin, providing diurnal-to-seasonal timescale energy buffering for renewable power integration. Diverging from conventional salt cavern-dependent approaches, artificial cavern-based CAES unlocks geographical adaptability through engineered underground containment. This study systematically reviews critical technologies in chamber construction, including site selection, structural design, excavation methods, and post-construction evaluation. Site selection employs a multi-criteria matrix that combines geological and environmental factors. Structural design integrates spatial layout, burial depth, sealing system, and component compatibility to ensure chamber stability. Excavation prioritizes controlled blasting for homogeneous rock, while a tunnel boring machine is deployed in fractured zones to preserve integrity. Post-construction assessments validate load-bearing capacity, sealing performance, and operational readiness, supported by data-driven maintenance strategies. Ongoing challenges include site-specific geological risks, sealing system durability under cyclic loading, equipment integration, field-scale validation, standardization gaps, and cost-efficiency optimization. These innovations will establish best practices for building large-scale, high-efficiency CAES plants with ultra-long duration and grid resilience, accelerating the transition to carbon-neutral power systems.

压缩空气储能(CAES)已成为电网规模储能的关键,为可再生能源集成提供昼夜到季节性的时间尺度能量缓冲。与传统的依赖盐洞的方法不同,基于人工洞穴的CAES通过工程地下密封来释放地理适应性。本文系统地回顾了硐室施工的关键技术,包括选址、结构设计、开挖方法和施工后评价。场地选择采用结合地质和环境因素的多标准矩阵。结构设计从空间布局、埋深、密封系统、部件兼容性等方面综合考虑,保证了腔室的稳定性。开挖对均质岩石优先控制爆破,而在裂隙区部署隧道掘进机以保持完整性。在数据驱动的维护策略的支持下,施工后评估可验证承重能力、密封性能和操作准备情况。目前面临的挑战包括现场特定的地质风险、循环载荷下密封系统的耐久性、设备集成、现场规模验证、标准化差距和成本效益优化。这些创新将为建设具有超长持续时间和电网弹性的大型高效CAES电厂建立最佳实践,加速向碳中和电力系统的过渡。
{"title":"Critical technologies in the construction of underground artificial chamber for compressed air energy storage systems","authors":"Jifang Wan,&nbsp;Mingyin Li,&nbsp;Rui Zhao,&nbsp;Wendong Ji,&nbsp;Jingcui Li,&nbsp;Maria J. Jurado,&nbsp;Yangqing Sun","doi":"10.1002/dug2.70064","DOIUrl":"https://doi.org/10.1002/dug2.70064","url":null,"abstract":"<p>Compressed air energy storage (CAES) has emerged as a grid-scale energy storage linchpin, providing diurnal-to-seasonal timescale energy buffering for renewable power integration. Diverging from conventional salt cavern-dependent approaches, artificial cavern-based CAES unlocks geographical adaptability through engineered underground containment. This study systematically reviews critical technologies in chamber construction, including site selection, structural design, excavation methods, and post-construction evaluation. Site selection employs a multi-criteria matrix that combines geological and environmental factors. Structural design integrates spatial layout, burial depth, sealing system, and component compatibility to ensure chamber stability. Excavation prioritizes controlled blasting for homogeneous rock, while a tunnel boring machine is deployed in fractured zones to preserve integrity. Post-construction assessments validate load-bearing capacity, sealing performance, and operational readiness, supported by data-driven maintenance strategies. Ongoing challenges include site-specific geological risks, sealing system durability under cyclic loading, equipment integration, field-scale validation, standardization gaps, and cost-efficiency optimization. These innovations will establish best practices for building large-scale, high-efficiency CAES plants with ultra-long duration and grid resilience, accelerating the transition to carbon-neutral power systems.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"513-529"},"PeriodicalIF":5.0,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic and elastoplastic analysis of surrounding rock in CAES chambers considering excavation-induced centripetal exponential reduction in mechanical properties 考虑开挖引起力学性能向心指数降低的CAES硐室围岩弹塑性分析
IF 5 Pub Date : 2025-09-09 DOI: 10.1002/dug2.70062
Zeyuan Sun, Cheng Zhao, Jinquan Xing, Ran Huang, Qinyuan Luo, Huiguan Chen, Jialun Niu

Currently, there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage (CAES) chambers. This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock, incorporating excavation-induced centripetal reduction of rock stiffness and strength. A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone (EDZ), deriving analytical solutions for both elastic and elastoplastic stress distributions. A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations, demonstrating strong consistency in stress field predictions. The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution. While it does not significantly affect the range of the plastic zone, it reduces the permeability and bearing capacity of the surrounding rock, highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice. Furthermore, this study provides a new approach for the selection of lining materials and structural design for CAES chambers: the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness, and the cohesion exceeds that of the surrounding rock, which can significantly optimize the overall system's stress distribution. This study provides valuable insights and references for the selection of excavation methods, stability assessment, and support structure design for CAES engineering, and holds significant importance for improving the CAES technology system.

目前,关于开挖破坏对地下压缩空气蓄能硐室稳定性影响的研究还比较缺乏。本研究提出了一种综合分析框架,用于评估CAES硐室围岩弹性和弹塑性应力场,并考虑了开挖引起的岩石刚度和强度向心降低。提出的模型引入了开挖扰动区内变形模量和黏聚力的指数缩减函数,推导了弹性和弹塑性应力分布的解析解。通过对工程实例的对比分析,验证了理论公式与数值模拟结果的一致性。研究结果表明,EDZ对弹性环向应力分布产生了显著的非单调变化。虽然对塑性区范围影响不明显,但降低了围岩的渗透性和承载力,突出了在设计实践中综合考虑力学性能向心折减和严格控制开挖损伤的必要性。此外,该研究为CAES腔室衬砌材料的选择和结构设计提供了新的思路:径向刚度平滑增加以匹配EDZ围岩刚度,并且黏聚力超过围岩,可以显著优化整个系统的应力分布。本研究为CAES工程的开挖方法选择、稳定性评价和支护结构设计提供了有价值的见解和参考,对完善CAES技术体系具有重要意义。
{"title":"Elastic and elastoplastic analysis of surrounding rock in CAES chambers considering excavation-induced centripetal exponential reduction in mechanical properties","authors":"Zeyuan Sun,&nbsp;Cheng Zhao,&nbsp;Jinquan Xing,&nbsp;Ran Huang,&nbsp;Qinyuan Luo,&nbsp;Huiguan Chen,&nbsp;Jialun Niu","doi":"10.1002/dug2.70062","DOIUrl":"https://doi.org/10.1002/dug2.70062","url":null,"abstract":"<p>Currently, there is a lack of research on the impact of excavation damage on the stability of underground compressed air energy storage (CAES) chambers. This study presents a comprehensive analytical framework for evaluating the elastic and elastoplastic stress fields in CAES chambers surrounding rock, incorporating excavation-induced centripetal reduction of rock stiffness and strength. A proposed model introduces exponential reduction functions for the deformation modulus and cohesion within the excavation disturbed zone (EDZ), deriving analytical solutions for both elastic and elastoplastic stress distributions. A case study of a practical engineering project validates the theoretical formulations through comparative analysis with numerical simulations, demonstrating strong consistency in stress field predictions. The main findings indicate that the EDZ causes a significant non-monotonic variation in the elastic hoop stress distribution. While it does not significantly affect the range of the plastic zone, it reduces the permeability and bearing capacity of the surrounding rock, highlighting the necessity of integrating the centripetal reduction of mechanical properties and strictly controlling excavation-induced damage in the design practice. Furthermore, this study provides a new approach for the selection of lining materials and structural design for CAES chambers: the radial stiffness smoothly increases to match the EDZ surrounding rock stiffness, and the cohesion exceeds that of the surrounding rock, which can significantly optimize the overall system's stress distribution. This study provides valuable insights and references for the selection of excavation methods, stability assessment, and support structure design for CAES engineering, and holds significant importance for improving the CAES technology system.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"582-596"},"PeriodicalIF":5.0,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics modeling of coupling compressed-air energy storage-thermal storage in salt caverns: An approach to insoluble sediment as heat reservoir feasibility analysis 盐洞压缩-空气蓄能-储热耦合多物理场建模:不溶性沉积物储热可行性分析方法
IF 5 Pub Date : 2025-09-02 DOI: 10.1002/dug2.70056
Tsunming Wong, Yingjie Wei, Yuxin Jie, Xiangyang Zhao, Jiamin Zhang

A significant number of salt caverns have high proportions of insoluble sediments, but the thermal storage utilization potential of insoluble sediments remains understudied within current research. Therefore, this study aims to explore the feasibility of an integrated compressed-air energy storage (CAES) coupled with insoluble sediment as the thermal storage media for salt caverns. In order to fulfill this objective, this study presents two steps to analyze the insoluble sediment's thermo-mechanical behavior under ordinary CAES conditions and coupled thermal energy storage (TES) conditions separately. A multiphysics-coupled numerical model was developed to investigate the thermal behavior of insoluble sediments at different heights. Then, a dual-cavity model with a sediment-filled channel was constructed to study the heat storage process in long- and short-term modes. Results demonstrated that sediment effectively protected cavern walls from thermal shocks caused by compressed air, maintaining temperature differentials within 1 K. Dual-cavity simulations revealed the sediment's capability to mitigate the temperature fluctuation of compressed air in caverns, achieving a 66% temperature reduction in the outflow interface during operation. The findings confirmed the feasibility of utilizing insoluble sediments for long-term thermal storage applications involving thermal cycles with ΔT = 150 K, attaining a heat storage density of 50 kW·h/m³. The results show that the heat capacity of the sediment contributes to the cavern wall's stability and provide references for developing integrated CAES-TES systems in sediment-filled salt caverns.

大量盐穴中不溶性沉积物的含量较高,但不溶性沉积物的储热利用潜力在目前的研究中尚未得到充分的研究。因此,本研究旨在探索综合压缩空气储能(CAES)与不溶性沉积物作为盐穴储热介质的可行性。为了实现这一目标,本研究分两个步骤分别分析了普通CAES条件下和耦合热储能(TES)条件下不溶性沉积物的热力学行为。建立了一个多物理场耦合的数值模型,研究了不同高度下不溶性沉积物的热行为。在此基础上,建立了含沉积物通道的双腔模型,研究了长期和短期模式下的储热过程。结果表明,沉积物有效地保护了洞穴壁免受压缩空气引起的热冲击,使温差保持在1 K以内。双空腔模拟显示,沉积物能够缓解空腔中压缩空气的温度波动,在运行过程中,流出界面的温度降低了66%。研究结果证实了利用不溶性沉积物进行长期储热应用的可行性,涉及ΔT = 150 K的热循环,储热密度为50 kW·h/m³。研究结果表明,沉积物的热容对岩洞壁的稳定性有重要影响,可为开发充填盐洞CAES-TES综合系统提供参考。
{"title":"Multiphysics modeling of coupling compressed-air energy storage-thermal storage in salt caverns: An approach to insoluble sediment as heat reservoir feasibility analysis","authors":"Tsunming Wong,&nbsp;Yingjie Wei,&nbsp;Yuxin Jie,&nbsp;Xiangyang Zhao,&nbsp;Jiamin Zhang","doi":"10.1002/dug2.70056","DOIUrl":"https://doi.org/10.1002/dug2.70056","url":null,"abstract":"<p>A significant number of salt caverns have high proportions of insoluble sediments, but the thermal storage utilization potential of insoluble sediments remains understudied within current research. Therefore, this study aims to explore the feasibility of an integrated compressed-air energy storage (CAES) coupled with insoluble sediment as the thermal storage media for salt caverns. In order to fulfill this objective, this study presents two steps to analyze the insoluble sediment's thermo-mechanical behavior under ordinary CAES conditions and coupled thermal energy storage (TES) conditions separately. A multiphysics-coupled numerical model was developed to investigate the thermal behavior of insoluble sediments at different heights. Then, a dual-cavity model with a sediment-filled channel was constructed to study the heat storage process in long- and short-term modes. Results demonstrated that sediment effectively protected cavern walls from thermal shocks caused by compressed air, maintaining temperature differentials within 1 K. Dual-cavity simulations revealed the sediment's capability to mitigate the temperature fluctuation of compressed air in caverns, achieving a 66% temperature reduction in the outflow interface during operation. The findings confirmed the feasibility of utilizing insoluble sediments for long-term thermal storage applications involving thermal cycles with Δ<i>T</i> = 150 K, attaining a heat storage density of 50 kW·h/m³. The results show that the heat capacity of the sediment contributes to the cavern wall's stability and provide references for developing integrated CAES-TES systems in sediment-filled salt caverns.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"777-791"},"PeriodicalIF":5.0,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel technological conception of integrated large-scale CO2 storage, water recovery, geothermal extraction, hydrogen production, and energy storage 一种集大型二氧化碳储存、水回收、地热开采、制氢和能源储存于一体的新技术概念
IF 5 Pub Date : 2025-09-01 DOI: 10.1002/dug2.70055
Huiling Ci, Bing Bai, Tiancheng Zhang, Hongwu Lei

Carbon capture, utilization, and storage (CCUS) is widely recognized as a technological system capable of achieving large-scale carbon dioxide emission reductions. However, its high costs and potential risks have limited its large-scale implementation. This study focuses on enhancing the economic viability of traditional CCUS by proposing a novel technological concept and system that integrates CCUS with water extraction, geothermal energy harvesting, hydrogen production, and energy storage. The system comprises three interconnected modules: (1) upstream CO2-enhanced water recovery (CO2-EWR), (2) midstream green hydrogen synthesis, and (3) downstream energy utilization. Through detailed explanations of the fundamental concept and related technological systems, its feasibility is demonstrated. Preliminary estimates indicate that under current conditions, the system lacks economic advantages. However, significant reductions in hydrogen production costs could enable the system to yield a profit of nearly 1000 Chinese Yuan (approximately 145 US dollars) per ton of CO2 in the future. Following an in-depth investigation, priority implementation in China's Tarim Basin and Ordos Basin is recommended. This technological system could significantly extend the industrial chain of traditional CCUS projects, promising additional social and ecnomic benefits. Furthermore, the involved gas–water displacement technology can help manage formation pressure and reduce leakage risks in large-scale carbon storage projects.

碳捕集、利用与封存(CCUS)是一种被广泛认为能够实现大规模二氧化碳减排的技术体系。然而,其高昂的成本和潜在的风险限制了其大规模实施。本研究的重点是通过提出一种新的技术概念和系统,将CCUS与水提取、地热能收集、制氢和储能相结合,从而提高传统CCUS的经济可行性。该系统包括三个相互关联的模块:(1)上游co2增强水回收(CO2-EWR),(2)中游绿色制氢,(3)下游能源利用。通过对基本概念和相关技术体系的详细说明,论证了其可行性。初步估计表明,在目前条件下,该系统缺乏经济优势。然而,氢气生产成本的显著降低可以使该系统在未来每吨二氧化碳产生近1000元人民币(约145美元)的利润。经过深入调查,建议在中国塔里木盆地和鄂尔多斯盆地优先实施。该技术体系可以显著延长传统CCUS项目的产业链,具有额外的社会效益和经济效益。此外,所涉及的气水驱替技术可以帮助管理地层压力,降低大型储碳项目的泄漏风险。
{"title":"A novel technological conception of integrated large-scale CO2 storage, water recovery, geothermal extraction, hydrogen production, and energy storage","authors":"Huiling Ci,&nbsp;Bing Bai,&nbsp;Tiancheng Zhang,&nbsp;Hongwu Lei","doi":"10.1002/dug2.70055","DOIUrl":"https://doi.org/10.1002/dug2.70055","url":null,"abstract":"<p>Carbon capture, utilization, and storage (CCUS) is widely recognized as a technological system capable of achieving large-scale carbon dioxide emission reductions. However, its high costs and potential risks have limited its large-scale implementation. This study focuses on enhancing the economic viability of traditional CCUS by proposing a novel technological concept and system that integrates CCUS with water extraction, geothermal energy harvesting, hydrogen production, and energy storage. The system comprises three interconnected modules: (1) upstream CO<sub>2</sub>-enhanced water recovery (CO<sub>2</sub>-EWR), (2) midstream green hydrogen synthesis, and (3) downstream energy utilization. Through detailed explanations of the fundamental concept and related technological systems, its feasibility is demonstrated. Preliminary estimates indicate that under current conditions, the system lacks economic advantages. However, significant reductions in hydrogen production costs could enable the system to yield a profit of nearly 1000 Chinese Yuan (approximately 145 US dollars) per ton of CO<sub>2</sub> in the future. Following an in-depth investigation, priority implementation in China's Tarim Basin and Ordos Basin is recommended. This technological system could significantly extend the industrial chain of traditional CCUS projects, promising additional social and ecnomic benefits. Furthermore, the involved gas–water displacement technology can help manage formation pressure and reduce leakage risks in large-scale carbon storage projects.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"686-698"},"PeriodicalIF":5.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in feature research topics in deep underground 地下深部地物特征研究进展
IF 5 Pub Date : 2025-08-25 DOI: 10.1002/dug2.70063
Jianguo Wang, Chunfai Leung

Deep Underground Science and Engineering (DUSE) is pleased to release this issue with feature articles reporting the advancement in several research topics related to deep underground. This issue contains one perspective article, two review articles, six research articles, and one case study article. These articles focus on underground energy storage, multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation, mineralization and formation of gold mine, interface and fracture seepage, experimental study on tunnel–sand–pile interaction, and high water-content materials for deep underground space backfilling, analytical solutions for the crack evolution direction in brittle rocks, and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures.

The perspective article deals with the construction of the first underground energy storage complex in Xuzhou, China. This article entitled “Compressed air and hydrogen storage experimental facilities for sustainable energy storage technologies at Yunlong Lake Laboratory (CAPABLE)” (DOI: 10.1002/dug2.70043) reported the construction progress and technical development of lined rock caverns (LRC) facility for compressed air and hydrogen storage. This facility will focus on the verification of load transfer, damage and failure mechanism of the LRC structure, and the development of new materials for both lining and sealing layers. Three key problems for compressed air and hydrogen storage in underground spaces will be addressed: cavern stability, sealing efficiency, and minimum environmental impacts.

One review article focuses on the genesis and preservation mechanisms of 10 000-m ultradeep dolomite reservoirs in China (entitled “Genesis and reservoir preservation mechanism of 10 000-m ultradeep dolomite in Chinese craton basin”, DOI: 10.1002/dug2.12112). This is indeed the first article on ultradeep reservoirs published in the Journal of DUSE. Ultradeep dolomite reservoirs are particularly important for the future oil and gas explorations in China's marine craton basin. This review article systematically expounds the genetic mechanism and reservoir formation mechanism of ancient dolomite, clarified the limiting factors of dolomitization process and the preservation mechanism of dolomite reservoirs in deep buried environment, explored the spatial distribution of dolomite reservoirs, and identified the major zones of oil and gas exploration in 10 000-m deep layers. This article has no doubt provided the latest update on the fundamental knowledge for future oil and gas explorations in China.

The other review article reports on the multiscale simulations for mechanical problems of rocks (entitled “A review of multiscale numerical modeling of rock mechanics and rock engineering”, DOI: 10.1002/dug2.12127). This article systemically reviews both geometrical and mechanical multi

一是剪切应力作用下裂纹扩展方向的解析解。本文(题为“脆性岩石渐进破坏过程中裂纹扩展方向演化的解析解”,DOI: 10.1002/dug2.12117)提出了一种新的分析方法来评估剪切应力和初始裂纹角度对脆性岩石渐进压缩破坏和微裂纹扩展方向的影响。另一篇文章涉及低围岩强度/覆盖层压力比隧道破坏的案例研究(题为“水隧道挤压破坏分析及修复措施:以叙利亚Tishreen隧道为例”,DOI: 10.1002/dug2.12120)。本文通过实例研究,提出了一种评估挤压潜力和破坏机制的方法,并制定了通过适当的岩体支护系统恢复隧道服务的补救措施。本文强调了对分析岩石中相关隧道问题的潜在有用知识。实验研究在深部地下科学与工程中占有重要地位。实验研究了两种材料界面上的气体迁移(题为“高放射性废物处理背景下半刚性边界条件下花岗岩-膨润土界面上的气体迁移”,DOI: 10.1002/dug2.12118)。对地下高放废物处置过程中粘土与围岩界面对气体输运的影响进行了定量评价。实验结果表明,岩石与膨润土缓冲层之间可能存在优先的气体运移通道。这需要在高放射性废物处置的安全评估中加以特别考虑。在基于CT图像的孔隙网络重建模型(题为“煤岩中气体渗流定量表征和可视化孔隙网络模型的原位加载”,DOI: 10.1002/dug2.12114)中,通过微通道流动模拟裂缝性多孔介质中的流动。研究了动态加载下煤样孔隙裂隙的微观演化规律和煤层气渗流规律。煤中孔隙和裂隙都具有良好的分形特征,可以构建等效的孔隙网络模型,模型中渗流通道的数量可以通过配位数的大小来反映。验证了孔网络模型算法与COMSOL对接技术的可行性。隧道-土-桩相互作用是浅埋地下工程中特别突出的问题,采矿空间的快速回填对采矿过程的安全至关重要。在干燥条件下,对预制的混凝土隧道-砂桩相互作用模型进行了振动台试验(题为“通过振动台试验研究混凝土隧道-砂桩相互作用的抗震性能”,DOI: 10.1002/dug2.12123)。模拟了静荷载和地震激励。计算了隧道的位移和弯矩,并预测了相应的相对密度最小位移和弯矩。高水料作为一种快速回填材料,以其优越的水固比和快速的凝结时间,作为一种经济环保的回填材料被广泛应用于地下空间。文章(题为:“深地下空间高水材料的三轴压缩行为”,DOI: 10.1002/dug2.70040)通过三轴压缩实验研究了水固比、固化时间和侧向约束压力对强度和出血机制的影响。试验结果表明围压对破坏模式有较大影响。无侧限高水材料具有剪切裂缝特征,但在围压作用下未观察到裂缝。这些受限高水材料在压实作用下的体积表现出与水出血相关的连续收缩。侧卧时出血水增多。本刊研究课题的广度突出了对地下深部不同课题的科学和实践关注。正如DUSE的2年成长社论(题为“深部地下科学与工程的2年成长:展望”,DOI: 10.1002/dug2.12139)所讨论的,深部地下科学与工程的研究正在编制中。这些前沿研究确实为地下深部的发展提供了方向。编辑希望扩大其在深层地下科学与工程方面的报道。我们期待这些出版物能够进一步激发深部地下科学与工程的创新,构建更好的深部地下知识图谱。DUSE于2025年6月首次获得5.0的影响因子,目前处于JCR Q1的级别。 此外,DUSE已被CSCD(2025.08)、ESCI(2024.06)、EI(2024.03)、Scopus(2023.07)等多个知名数据库收录。编辑们诚挚地邀请研究人员和行业专业人士通过高质量的贡献继续推进这一关键话语,最终在全球范围内促进更安全和更可持续的深地下实践。
{"title":"Progress in feature research topics in deep underground","authors":"Jianguo Wang,&nbsp;Chunfai Leung","doi":"10.1002/dug2.70063","DOIUrl":"https://doi.org/10.1002/dug2.70063","url":null,"abstract":"<p><i>Deep Underground Science and Engineering</i> (DUSE) is pleased to release this issue with <i>feature articles reporting the advancement in several research topics related to deep underground</i>. This issue contains one perspective article, two review articles, six research articles, and one case study article. These articles focus on underground energy storage, multiscale modeling for correlation between micro-scale damage and macro-scale structural degradation, mineralization and formation of gold mine, interface and fracture seepage, experimental study on tunnel–sand–pile interaction, and high water-content materials for deep underground space backfilling, analytical solutions for the crack evolution direction in brittle rocks, and a case study on the squeezing-induced failure in a water drainage tunnel and the rehabilitation measures.</p><p>The perspective article deals with the construction of the first underground energy storage complex in Xuzhou, China. This article entitled “Compressed air and hydrogen storage experimental facilities for sustainable energy storage technologies at Yunlong Lake Laboratory (CAPABLE)” <i>(DOI: 10.1002/dug2.70043)</i> reported the construction progress and technical development of lined rock caverns (LRC) facility for compressed air and hydrogen storage. This facility will focus on the verification of load transfer, damage and failure mechanism of the LRC structure, and the development of new materials for both lining and sealing layers. Three key problems for compressed air and hydrogen storage in underground spaces will be addressed: cavern stability, sealing efficiency, and minimum environmental impacts.</p><p>One review article focuses on the genesis and preservation mechanisms of 10 000-m ultradeep dolomite reservoirs in China (entitled “Genesis and reservoir preservation mechanism of 10 000-m ultradeep dolomite in Chinese craton basin”, <i>DOI: 10.1002/dug2.12112</i>). This is indeed the first article on ultradeep reservoirs published in the Journal of DUSE. Ultradeep dolomite reservoirs are particularly important for the future oil and gas explorations in China's marine craton basin. This review article systematically expounds the genetic mechanism and reservoir formation mechanism of ancient dolomite, clarified the limiting factors of dolomitization process and the preservation mechanism of dolomite reservoirs in deep buried environment, explored the spatial distribution of dolomite reservoirs, and identified the major zones of oil and gas exploration in 10 000-m deep layers. This article has no doubt provided the latest update on the fundamental knowledge for future oil and gas explorations in China.</p><p>The other review article reports on the multiscale simulations for mechanical problems of rocks (entitled “A review of multiscale numerical modeling of rock mechanics and rock engineering”, <i>DOI: 10.1002/dug2.12127</i>). This article systemically reviews both geometrical and mechanical multi","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 3","pages":"339-340"},"PeriodicalIF":5.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of geothermal resource exploration and development in North Africa 北非地热资源勘探开发概况
IF 5 Pub Date : 2025-07-04 DOI: 10.1002/dug2.70042
Meryem Redouane

Geothermal exploration and development in North Africa have advanced significantly, driven by the region's rich geothermal resources and rising energy demand. The countries of Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt are located near tectonic plate boundaries (African and Eurasian plates), giving them substantial geothermal potential. Various exploration activities, including geological surveys and geophysical studies, have been conducted to assess geothermal reservoirs and identify suitable development sites. This article reviews the progress made in geothermal exploration across the region, highlighting the key activities undertaken to evaluate geothermal resources. It also explores how government policies have played a critical role either in fostering or in freezing geothermal development. The different conducted assessments such as analyzing geological structures, hydrothermal systems, and subsurface temperatures lead to identify suitable sites for geothermal development and improve the understanding of subsurface conditions and ongoing projects. Today, some countries in North Africa are positioning themselves to become important players in the global geothermal energy landscape, and with continued investment and concerted efforts, the region has the potential to emerge as a prominent player in the global geothermal energy landscape.

受北非地区丰富的地热资源和不断增长的能源需求的推动,该地区的地热勘探和开发取得了显著进展。毛里塔尼亚、摩洛哥、阿尔及利亚、突尼斯、利比亚和埃及等国位于构造板块边界附近(非洲和欧亚板块),因此具有巨大的地热潜力。进行了各种勘探活动,包括地质调查和地球物理研究,以评价地热储层和确定适当的开发地点。本文综述了该地区地热勘探的进展,重点介绍了地热资源评价的主要活动。它还探讨了政府政策如何在促进或冻结地热开发方面发挥关键作用。通过分析地质构造、热液系统和地下温度等不同的评估,可以确定适合地热开发的地点,并提高对地下条件和正在进行的项目的了解。今天,北非的一些国家正在将自己定位为全球地热能领域的重要参与者,并且通过持续的投资和协调一致的努力,该地区有可能成为全球地热能领域的重要参与者。
{"title":"Overview of geothermal resource exploration and development in North Africa","authors":"Meryem Redouane","doi":"10.1002/dug2.70042","DOIUrl":"https://doi.org/10.1002/dug2.70042","url":null,"abstract":"<p>Geothermal exploration and development in North Africa have advanced significantly, driven by the region's rich geothermal resources and rising energy demand. The countries of Mauritania, Morocco, Algeria, Tunisia, Libya, and Egypt are located near tectonic plate boundaries (African and Eurasian plates), giving them substantial geothermal potential. Various exploration activities, including geological surveys and geophysical studies, have been conducted to assess geothermal reservoirs and identify suitable development sites. This article reviews the progress made in geothermal exploration across the region, highlighting the key activities undertaken to evaluate geothermal resources. It also explores how government policies have played a critical role either in fostering or in freezing geothermal development. The different conducted assessments such as analyzing geological structures, hydrothermal systems, and subsurface temperatures lead to identify suitable sites for geothermal development and improve the understanding of subsurface conditions and ongoing projects. Today, some countries in North Africa are positioning themselves to become important players in the global geothermal energy landscape, and with continued investment and concerted efforts, the region has the potential to emerge as a prominent player in the global geothermal energy landscape.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"673-685"},"PeriodicalIF":5.0,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145750656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability analysis of a compressed air energy storage cavern transformed from a horseshoe-shaped roadway in an abandoned coal mine 某废弃煤矿马蹄形巷道改造压缩空气储能硐室稳定性分析
IF 5 Pub Date : 2025-06-27 DOI: 10.1002/dug2.70041
Rui Sun, Jianguo Wang, Yuejin Zhou, Xiaoji Shang, Chunfai Leung

Compressed air energy storage (CAES) caverns transformed from horseshoe-shaped roadways in abandoned coal mines still face unclear mechanisms of force transfer, especially in the presence of initial damage in the surrounding rock. The shape and size of the initial damage area as well as their effect on cavern stability remain unclear. Due to the complex geometry and multiphysical couplings, traditional numerical algorithms encounter problems of nonconvergence and low accuracy. These challenges can be addressed through numerical simulations with robust convergence and high accuracy. In this study, the damage area shapes of a CAES cavern are first computed using the concept of damage levels. Then, an iteration algorithm is improved using the generalization α method through the error control and one-way coupling loop for fully coupling equations. Finally, the stability of the CAES cavern with different damage zone shapes is numerically simulated in the thermodynamic process. It is found that this improved algorithm can greatly enhance numerical convergence and accuracy. The nonuniformity of the elastic modulus has a significant impact on the mechanical responses of the CAES cavern. The cavern shape with different damage zones has significant impacts on cavern stability. The initial damage area can delay the responses of temperature and stress. It induces variations of temperature in the range of approximately 1.2 m and variations of stress in the range of 1.5 m from the damage area.

由废弃煤矿马蹄形巷道改造而成的压缩空气储能(CAES)洞室的力传递机制尚不清楚,特别是在围岩存在初始损伤的情况下。初始损伤区域的形状和大小及其对洞室稳定性的影响尚不清楚。由于复杂的几何结构和多物理耦合,传统的数值算法存在不收敛和精度低等问题。这些挑战可以通过具有鲁棒收敛性和高精度的数值模拟来解决。在本研究中,首先使用损伤等级的概念计算CAES洞室的损伤区域形状。然后,通过误差控制和单向耦合环对全耦合方程的迭代算法进行了改进。最后,对不同损伤区形状的CAES洞室在热力学过程中的稳定性进行数值模拟。结果表明,改进后的算法大大提高了数值收敛性和精度。弹性模量的不均匀性对CAES洞室的力学响应有显著影响。不同损伤区洞室形状对洞室稳定性有显著影响。初始损伤区域可以延迟温度和应力的响应。它引起了距离损伤区域约1.2 m范围内的温度变化和1.5 m范围内的应力变化。
{"title":"Stability analysis of a compressed air energy storage cavern transformed from a horseshoe-shaped roadway in an abandoned coal mine","authors":"Rui Sun,&nbsp;Jianguo Wang,&nbsp;Yuejin Zhou,&nbsp;Xiaoji Shang,&nbsp;Chunfai Leung","doi":"10.1002/dug2.70041","DOIUrl":"https://doi.org/10.1002/dug2.70041","url":null,"abstract":"<p>Compressed air energy storage (CAES) caverns transformed from horseshoe-shaped roadways in abandoned coal mines still face unclear mechanisms of force transfer, especially in the presence of initial damage in the surrounding rock. The shape and size of the initial damage area as well as their effect on cavern stability remain unclear. Due to the complex geometry and multiphysical couplings, traditional numerical algorithms encounter problems of nonconvergence and low accuracy. These challenges can be addressed through numerical simulations with robust convergence and high accuracy. In this study, the damage area shapes of a CAES cavern are first computed using the concept of damage levels. Then, an iteration algorithm is improved using the generalization <i>α</i> method through the error control and one-way coupling loop for fully coupling equations. Finally, the stability of the CAES cavern with different damage zone shapes is numerically simulated in the thermodynamic process. It is found that this improved algorithm can greatly enhance numerical convergence and accuracy. The nonuniformity of the elastic modulus has a significant impact on the mechanical responses of the CAES cavern. The cavern shape with different damage zones has significant impacts on cavern stability. The initial damage area can delay the responses of temperature and stress. It induces variations of temperature in the range of approximately 1.2 m and variations of stress in the range of 1.5 m from the damage area.</p>","PeriodicalId":100363,"journal":{"name":"Deep Underground Science and Engineering","volume":"4 4","pages":"562-581"},"PeriodicalIF":5.0,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dug2.70041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Deep Underground Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1