SDA:用于驾驶视频中车辆运动检测的新型倾斜深度架构

Tansu Temel, Mehmet Kiliçarslan, Yasar Hoscan
{"title":"SDA:用于驾驶视频中车辆运动检测的新型倾斜深度架构","authors":"Tansu Temel, Mehmet Kiliçarslan, Yasar Hoscan","doi":"10.17780/ksujes.1358512","DOIUrl":null,"url":null,"abstract":"Collision avoidance mechanisms are important topics for studies in the field of autonomous vehicles. We could obtain prior information about the collision from the movement angles of vehicles. Therefore, it is important issue to learn the movement angles of vehicles in motion. In the study, an architectural model is developed that learns the horizontal movement angles of vehicles to form a base for collision warning systems. YOLOv3 is modified and used on motion profiles. Thanks to the learned angle values, also the bounding boxes match the traces in the motion profiles smoothly. The results obtained have a mAP value of 79% and an operating speed of 36 FPS. These results are better than when trained on motion profiles of the YOLOv3 architecture. In addition, the use of the new architecture on motion profiles and factors such as noise and bad weather in the image do not adversely affect the results. With these features, a fundamental step has been taken for anti-collision systems.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"15 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDA: A NOVEL SKEWED-DEEP-ARCHITECTURE FOR VEHICLE MOTION DETECTION IN DRIVING VIDEOS\",\"authors\":\"Tansu Temel, Mehmet Kiliçarslan, Yasar Hoscan\",\"doi\":\"10.17780/ksujes.1358512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collision avoidance mechanisms are important topics for studies in the field of autonomous vehicles. We could obtain prior information about the collision from the movement angles of vehicles. Therefore, it is important issue to learn the movement angles of vehicles in motion. In the study, an architectural model is developed that learns the horizontal movement angles of vehicles to form a base for collision warning systems. YOLOv3 is modified and used on motion profiles. Thanks to the learned angle values, also the bounding boxes match the traces in the motion profiles smoothly. The results obtained have a mAP value of 79% and an operating speed of 36 FPS. These results are better than when trained on motion profiles of the YOLOv3 architecture. In addition, the use of the new architecture on motion profiles and factors such as noise and bad weather in the image do not adversely affect the results. With these features, a fundamental step has been taken for anti-collision systems.\",\"PeriodicalId\":508025,\"journal\":{\"name\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17780/ksujes.1358512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1358512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

避撞机制是自动驾驶汽车领域的重要研究课题。我们可以从车辆的运动角度获得有关碰撞的先验信息。因此,学习运动中车辆的运动角度是一个重要问题。在这项研究中,我们开发了一个学习车辆水平运动角度的架构模型,为碰撞预警系统奠定了基础。对 YOLOv3 进行了修改,并将其用于运动曲线。由于学习到了角度值,因此边界框也能与运动曲线中的轨迹顺利匹配。获得的结果的 mAP 值为 79%,运行速度为 36 FPS。这些结果优于在 YOLOv3 架构的运动曲线上进行的训练。此外,在运动曲线上使用新架构以及图像中的噪声和恶劣天气等因素都不会对结果产生不利影响。有了这些功能,防碰撞系统就迈出了根本性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SDA: A NOVEL SKEWED-DEEP-ARCHITECTURE FOR VEHICLE MOTION DETECTION IN DRIVING VIDEOS
Collision avoidance mechanisms are important topics for studies in the field of autonomous vehicles. We could obtain prior information about the collision from the movement angles of vehicles. Therefore, it is important issue to learn the movement angles of vehicles in motion. In the study, an architectural model is developed that learns the horizontal movement angles of vehicles to form a base for collision warning systems. YOLOv3 is modified and used on motion profiles. Thanks to the learned angle values, also the bounding boxes match the traces in the motion profiles smoothly. The results obtained have a mAP value of 79% and an operating speed of 36 FPS. These results are better than when trained on motion profiles of the YOLOv3 architecture. In addition, the use of the new architecture on motion profiles and factors such as noise and bad weather in the image do not adversely affect the results. With these features, a fundamental step has been taken for anti-collision systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PİRAZOL TÜREVI BİR BİLEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ GÜNCEL SANATTA BİR ÜRETİM BİÇİMİ OLARAK ÇEKİŞMELİ ÜRETKEN AĞLAR BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ MULTİSPEKTRAL VE HİPERSPEKTRAL GÖRÜNTÜLEME TEKNİKLERİNİN MEYVE - SEBZE İŞLEME TESİSLERİNDE KULLANIM OLANAKLARI A DEEP LEARNING-BASED DEMAND FORECASTING SYSTEM FOR PLANNING ELECTRICITY GENERATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1