优化用于连续纤维增强热塑性塑料短期动态拉伸测试的锥形试样几何形状

Florian Mischo, S. Schmeer
{"title":"优化用于连续纤维增强热塑性塑料短期动态拉伸测试的锥形试样几何形状","authors":"Florian Mischo, S. Schmeer","doi":"10.3390/jcs8030093","DOIUrl":null,"url":null,"abstract":"Continuous fiber reinforced thermoplastics (cFRTP) are one of the most promising lightweight materials. For their use in structural components, reproducible and comparable material values have to be evaluated, especially at high strain rates. Due to their high stiffness and outstanding strength properties, the evaluation of the material behavior at high strain rates is complex. In the presented work, a new tensile specimen geometry for strain rate testing is virtually optimized using a metamodel approach with an artificial neural network. The final specimen design is experimentally validated and compared with rectangular specimen results for a carbon fiber reinforced polycarbonate (CF-PC). The optimized specimen geometry leads to 100% valid test results in experimental validation of cross-ply laminates and reaches 9% higher tensile strength values than the rectangle geometry with applied end tabs at a strain rate of 40 s−1. Through the optimization, comparable material parameters can be efficiently generated for a successful cFRTP strain rate characterization.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"7 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a Tapered Specimen Geometry for Short-Term Dynamic Tensile Testing of Continuous Fiber Reinforced Thermoplastics\",\"authors\":\"Florian Mischo, S. Schmeer\",\"doi\":\"10.3390/jcs8030093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous fiber reinforced thermoplastics (cFRTP) are one of the most promising lightweight materials. For their use in structural components, reproducible and comparable material values have to be evaluated, especially at high strain rates. Due to their high stiffness and outstanding strength properties, the evaluation of the material behavior at high strain rates is complex. In the presented work, a new tensile specimen geometry for strain rate testing is virtually optimized using a metamodel approach with an artificial neural network. The final specimen design is experimentally validated and compared with rectangular specimen results for a carbon fiber reinforced polycarbonate (CF-PC). The optimized specimen geometry leads to 100% valid test results in experimental validation of cross-ply laminates and reaches 9% higher tensile strength values than the rectangle geometry with applied end tabs at a strain rate of 40 s−1. Through the optimization, comparable material parameters can be efficiently generated for a successful cFRTP strain rate characterization.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8030093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8030093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续纤维增强热塑性塑料(cFRTP)是最有前途的轻质材料之一。要将其应用于结构部件,必须对材料的可重复性和可比性进行评估,尤其是在高应变速率下。由于其具有高刚度和出色的强度特性,对高应变速率下的材料行为进行评估非常复杂。在本研究中,利用人工神经网络元模型方法,对用于应变速率测试的新型拉伸试样几何形状进行了虚拟优化。最终的试样设计经过了实验验证,并与碳纤维增强聚碳酸酯(CF-PC)的矩形试样结果进行了比较。在交叉层压板的实验验证中,优化后的试样几何形状可获得 100% 的有效测试结果,在应变速率为 40 s-1 的情况下,其抗拉强度值比带有应用端片的矩形几何形状高出 9%。通过优化,可有效生成可比材料参数,从而成功进行 cFRTP 应变速率表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of a Tapered Specimen Geometry for Short-Term Dynamic Tensile Testing of Continuous Fiber Reinforced Thermoplastics
Continuous fiber reinforced thermoplastics (cFRTP) are one of the most promising lightweight materials. For their use in structural components, reproducible and comparable material values have to be evaluated, especially at high strain rates. Due to their high stiffness and outstanding strength properties, the evaluation of the material behavior at high strain rates is complex. In the presented work, a new tensile specimen geometry for strain rate testing is virtually optimized using a metamodel approach with an artificial neural network. The final specimen design is experimentally validated and compared with rectangular specimen results for a carbon fiber reinforced polycarbonate (CF-PC). The optimized specimen geometry leads to 100% valid test results in experimental validation of cross-ply laminates and reaches 9% higher tensile strength values than the rectangle geometry with applied end tabs at a strain rate of 40 s−1. Through the optimization, comparable material parameters can be efficiently generated for a successful cFRTP strain rate characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1