评估赣指纹去除方法在欺骗深度伪人脸检测中的有效性

Wasin AlKishri, Dr. Setyawan Widyarto, Dr. Jabar H. Yousif
{"title":"评估赣指纹去除方法在欺骗深度伪人脸检测中的有效性","authors":"Wasin AlKishri, Dr. Setyawan Widyarto, Dr. Jabar H. Yousif","doi":"10.58346/jisis.2024.i1.006","DOIUrl":null,"url":null,"abstract":"Deep neural networks are able to generate stunningly realistic images, making it easy to fool both technology and humans into distinguishing real images from fake ones. Generative Adversarial Networks (GANs) play a significant role in these successes (GANs). Various studies have shown that combining features from different domains can produce effective results. However, the challenges lie in detecting these fake images, especially when modifications or removal of GAN components are involved. In this research, we analyse the high-frequency Fourier modes of real and deep network-generated images and show that Images generated by deep networks share an observable, systematic shortcoming when it comes to reproducing their high-frequency features. We illustrate how eliminating the GAN fingerprint in modified pictures' frequency and spatial spectrum might affect deep-fake detection approaches. In-depth review of the latest research on the GAN-Based Artifacts Detection Method. We empirically assess our approach to the CNN detection model using style GAN structures 140k datasets of Real and Fake Faces. Our method has dramatically reduced the detection rate of fake images by 50%. In our study, we found that adversaries are able to remove the fingerprints of GANs, making it difficult to detect the generated images. This result confirms the lack of robustness of current algorithms and the need for further research in this area.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":"31 50","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection\",\"authors\":\"Wasin AlKishri, Dr. Setyawan Widyarto, Dr. Jabar H. Yousif\",\"doi\":\"10.58346/jisis.2024.i1.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks are able to generate stunningly realistic images, making it easy to fool both technology and humans into distinguishing real images from fake ones. Generative Adversarial Networks (GANs) play a significant role in these successes (GANs). Various studies have shown that combining features from different domains can produce effective results. However, the challenges lie in detecting these fake images, especially when modifications or removal of GAN components are involved. In this research, we analyse the high-frequency Fourier modes of real and deep network-generated images and show that Images generated by deep networks share an observable, systematic shortcoming when it comes to reproducing their high-frequency features. We illustrate how eliminating the GAN fingerprint in modified pictures' frequency and spatial spectrum might affect deep-fake detection approaches. In-depth review of the latest research on the GAN-Based Artifacts Detection Method. We empirically assess our approach to the CNN detection model using style GAN structures 140k datasets of Real and Fake Faces. Our method has dramatically reduced the detection rate of fake images by 50%. In our study, we found that adversaries are able to remove the fingerprints of GANs, making it difficult to detect the generated images. This result confirms the lack of robustness of current algorithms and the need for further research in this area.\",\"PeriodicalId\":36718,\"journal\":{\"name\":\"Journal of Internet Services and Information Security\",\"volume\":\"31 50\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jisis.2024.i1.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2024.i1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络能够生成令人惊叹的逼真图像,让技术和人类轻松辨别真假图像。生成对抗网络(GAN)在这些成功中发挥了重要作用。各种研究表明,结合不同领域的特征可以产生有效的结果。然而,如何检测这些伪造图像,尤其是在涉及修改或删除 GAN 组件的情况下,是一项挑战。在这项研究中,我们分析了真实图像和深度网络生成图像的高频傅立叶模式,结果表明,深度网络生成的图像在再现其高频特征方面存在可观察到的系统性缺陷。我们说明了在修改后的图片频率和空间频谱中消除 GAN 指纹会如何影响深度防伪检测方法。深入回顾基于 GAN 的伪影检测方法的最新研究。我们使用样式 GAN 结构 140k 真实和虚假人脸数据集对 CNN 检测模型的方法进行了实证评估。我们的方法将假图像的检测率大幅降低了 50%。在我们的研究中,我们发现对手能够消除 GAN 的指纹,从而难以检测生成的图像。这一结果证实了当前算法缺乏鲁棒性,需要在这一领域开展进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection
Deep neural networks are able to generate stunningly realistic images, making it easy to fool both technology and humans into distinguishing real images from fake ones. Generative Adversarial Networks (GANs) play a significant role in these successes (GANs). Various studies have shown that combining features from different domains can produce effective results. However, the challenges lie in detecting these fake images, especially when modifications or removal of GAN components are involved. In this research, we analyse the high-frequency Fourier modes of real and deep network-generated images and show that Images generated by deep networks share an observable, systematic shortcoming when it comes to reproducing their high-frequency features. We illustrate how eliminating the GAN fingerprint in modified pictures' frequency and spatial spectrum might affect deep-fake detection approaches. In-depth review of the latest research on the GAN-Based Artifacts Detection Method. We empirically assess our approach to the CNN detection model using style GAN structures 140k datasets of Real and Fake Faces. Our method has dramatically reduced the detection rate of fake images by 50%. In our study, we found that adversaries are able to remove the fingerprints of GANs, making it difficult to detect the generated images. This result confirms the lack of robustness of current algorithms and the need for further research in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection CSA-Forecaster: Stacked Model for Forecasting Child Sexual Abuse A Nonredundant SVD-based Precoding Matrix for Blind Channel Estimation in CP-OFDM Systems Over Channels with Memory An Intelligent Health Surveillance System: Predictive Modeling of Cardiovascular Parameters through Machine Learning Algorithms Using LoRa Communication and Internet of Medical Things (IoMT) Identifying Large Young Hacker Concentration in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1