{"title":"基于领域对抗神经网络的双模态特征融合谎言检测技术","authors":"Yan Zhou, Feng Bu","doi":"10.1049/2024/7914185","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the domain of lie detection, a common challenge arises from the dissimilar distributions of training and testing datasets. This causes a model mismatch, leading to a performance decline of the pretrained deep learning model. To solve this problem, we propose a lie detection technique based on a domain adversarial neural network employing a dual-mode state feature. First, a deep learning neural network was used as a feature extractor to isolate speech and facial expression features exhibited by the liars. The data distributions of the source and target domain signals must be aligned. Second, a domain-antagonistic transfer-learning mechanism is introduced to build a neural network. The objective is to facilitate feature migration from the training to the testing domain, that is, the migration of lie-related features from the source to the target domain. This method results in improved lie detection accuracy. Simulations conducted on two professional lying databases with different distributions show the superiority of the detection rate of the proposed method compared to an unimodal feature detection algorithm. The maximum improvement in detection rate was 23.3% compared to the traditional neural network-based detection method. Therefore, the proposed method can learn features unrelated to domain categories, effectively mitigating the problem posed by different distributions in the training and testing of lying data.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7914185","citationCount":"0","resultStr":"{\"title\":\"Lie Detection Technology of Bimodal Feature Fusion Based on Domain Adversarial Neural Networks\",\"authors\":\"Yan Zhou, Feng Bu\",\"doi\":\"10.1049/2024/7914185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In the domain of lie detection, a common challenge arises from the dissimilar distributions of training and testing datasets. This causes a model mismatch, leading to a performance decline of the pretrained deep learning model. To solve this problem, we propose a lie detection technique based on a domain adversarial neural network employing a dual-mode state feature. First, a deep learning neural network was used as a feature extractor to isolate speech and facial expression features exhibited by the liars. The data distributions of the source and target domain signals must be aligned. Second, a domain-antagonistic transfer-learning mechanism is introduced to build a neural network. The objective is to facilitate feature migration from the training to the testing domain, that is, the migration of lie-related features from the source to the target domain. This method results in improved lie detection accuracy. Simulations conducted on two professional lying databases with different distributions show the superiority of the detection rate of the proposed method compared to an unimodal feature detection algorithm. The maximum improvement in detection rate was 23.3% compared to the traditional neural network-based detection method. Therefore, the proposed method can learn features unrelated to domain categories, effectively mitigating the problem posed by different distributions in the training and testing of lying data.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7914185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/7914185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7914185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Lie Detection Technology of Bimodal Feature Fusion Based on Domain Adversarial Neural Networks
In the domain of lie detection, a common challenge arises from the dissimilar distributions of training and testing datasets. This causes a model mismatch, leading to a performance decline of the pretrained deep learning model. To solve this problem, we propose a lie detection technique based on a domain adversarial neural network employing a dual-mode state feature. First, a deep learning neural network was used as a feature extractor to isolate speech and facial expression features exhibited by the liars. The data distributions of the source and target domain signals must be aligned. Second, a domain-antagonistic transfer-learning mechanism is introduced to build a neural network. The objective is to facilitate feature migration from the training to the testing domain, that is, the migration of lie-related features from the source to the target domain. This method results in improved lie detection accuracy. Simulations conducted on two professional lying databases with different distributions show the superiority of the detection rate of the proposed method compared to an unimodal feature detection algorithm. The maximum improvement in detection rate was 23.3% compared to the traditional neural network-based detection method. Therefore, the proposed method can learn features unrelated to domain categories, effectively mitigating the problem posed by different distributions in the training and testing of lying data.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf