基于经历史气象数据修改的时空模型的 COVID-19 流行病高分辨率短期预测

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-05-01 DOI:10.1016/j.fmre.2024.02.006
Bin Chen , Ruming Chen , Lin Zhao , Yuxiang Ren , Li Zhang , Yingjie Zhao , Xinbo Lian , Wei Yan , Shuoyuan Gao
{"title":"基于经历史气象数据修改的时空模型的 COVID-19 流行病高分辨率短期预测","authors":"Bin Chen ,&nbsp;Ruming Chen ,&nbsp;Lin Zhao ,&nbsp;Yuxiang Ren ,&nbsp;Li Zhang ,&nbsp;Yingjie Zhao ,&nbsp;Xinbo Lian ,&nbsp;Wei Yan ,&nbsp;Shuoyuan Gao","doi":"10.1016/j.fmre.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>In the global challenge of Coronavirus disease 2019 (COVID-19) pandemic, accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning. In contrast to traditional local, one-dimensional time-series data-based infection models, the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional, gridded time series for both input and prediction targets. A spatial-temporal depth prediction model for COVID-19 (ConvLSTM) is presented, and further ConvLSTM by integrating historical meteorological factors (Meteor-ConvLSTM) is refined, considering the influence of meteorological factors on the propagation of COVID-19. The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated, employing spatial analysis techniques (spatial autocorrelation analysis, trend surface analysis, etc.) to describe the spatial and temporal characteristics of the epidemic. Leveraging the original ConvLSTM, an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread, providing a 5-day forecast at a 0.01° × 0.01° pixel resolution. Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM, with reduced RMSE of 0.110 and increased <em>R</em><sup>2</sup> of 0.125 (original ConvLSTM: RMSE = 0.702, <em>R</em><sup>2</sup> = 0.567; Meteor-ConvLSTM: RMSE = 0.592, <em>R</em><sup>2</sup> = 0.692), showcasing its utility for investigating the epidemiological characteristics, transmission dynamics, and epidemic development.</p></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667325824000992/pdfft?md5=0ac7345cbd2c687e9d91441adc1e9c1e&pid=1-s2.0-S2667325824000992-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-resolution short-term prediction of the COVID-19 epidemic based on spatial-temporal model modified by historical meteorological data\",\"authors\":\"Bin Chen ,&nbsp;Ruming Chen ,&nbsp;Lin Zhao ,&nbsp;Yuxiang Ren ,&nbsp;Li Zhang ,&nbsp;Yingjie Zhao ,&nbsp;Xinbo Lian ,&nbsp;Wei Yan ,&nbsp;Shuoyuan Gao\",\"doi\":\"10.1016/j.fmre.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the global challenge of Coronavirus disease 2019 (COVID-19) pandemic, accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning. In contrast to traditional local, one-dimensional time-series data-based infection models, the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional, gridded time series for both input and prediction targets. A spatial-temporal depth prediction model for COVID-19 (ConvLSTM) is presented, and further ConvLSTM by integrating historical meteorological factors (Meteor-ConvLSTM) is refined, considering the influence of meteorological factors on the propagation of COVID-19. The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated, employing spatial analysis techniques (spatial autocorrelation analysis, trend surface analysis, etc.) to describe the spatial and temporal characteristics of the epidemic. Leveraging the original ConvLSTM, an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread, providing a 5-day forecast at a 0.01° × 0.01° pixel resolution. Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM, with reduced RMSE of 0.110 and increased <em>R</em><sup>2</sup> of 0.125 (original ConvLSTM: RMSE = 0.702, <em>R</em><sup>2</sup> = 0.567; Meteor-ConvLSTM: RMSE = 0.592, <em>R</em><sup>2</sup> = 0.692), showcasing its utility for investigating the epidemiological characteristics, transmission dynamics, and epidemic development.</p></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667325824000992/pdfft?md5=0ac7345cbd2c687e9d91441adc1e9c1e&pid=1-s2.0-S2667325824000992-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325824000992\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824000992","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

在冠状病毒病 2019(COVID-19)大流行的全球性挑战中,准确预测每日新增病例对于防疫和社会经济规划至关重要。与传统的基于本地一维时间序列数据的感染模型相比,本研究引入了一种创新方法,将一个地区新病例的短期预测问题表述为输入和预测目标的多维网格化时间序列。研究提出了 COVID-19 的时空深度预测模型(ConvLSTM),并考虑到气象因素对 COVID-19 传播的影响,进一步完善了整合历史气象因素的 ConvLSTM(Meteor-ConvLSTM)。利用空间分析技术(空间自相关分析、趋势面分析等)描述疫情的时空特征,评估了 10 个气象因子与 COVID-19 动态发展之间的相关性。利用原有的 ConvLSTM,引入人工神经网络层来学习气象因素对感染传播的影响,以 0.01° × 0.01° 的像素分辨率提供 5 天的预测。使用上海 3.15 疫情的真实数据集进行的仿真结果表明了 Meteor-ConvLSTM 的功效,RMSE 降低了 0.110,R2 提高了 0.125(原始 ConvLSTM:RMSE = 0.702,R2 = 0.567;Meteor-ConvLSTM:RMSE = 0.592,R2 = 0.692),展示了其在研究流行病学特征、传播动态和疫情发展方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-resolution short-term prediction of the COVID-19 epidemic based on spatial-temporal model modified by historical meteorological data

In the global challenge of Coronavirus disease 2019 (COVID-19) pandemic, accurate prediction of daily new cases is crucial for epidemic prevention and socioeconomic planning. In contrast to traditional local, one-dimensional time-series data-based infection models, the study introduces an innovative approach by formulating the short-term prediction problem of new cases in a region as multidimensional, gridded time series for both input and prediction targets. A spatial-temporal depth prediction model for COVID-19 (ConvLSTM) is presented, and further ConvLSTM by integrating historical meteorological factors (Meteor-ConvLSTM) is refined, considering the influence of meteorological factors on the propagation of COVID-19. The correlation between 10 meteorological factors and the dynamic progression of COVID-19 was evaluated, employing spatial analysis techniques (spatial autocorrelation analysis, trend surface analysis, etc.) to describe the spatial and temporal characteristics of the epidemic. Leveraging the original ConvLSTM, an artificial neural network layer is introduced to learn how meteorological factors impact the infection spread, providing a 5-day forecast at a 0.01° × 0.01° pixel resolution. Simulation results using real dataset from the 3.15 outbreak in Shanghai demonstrate the efficacy of Meteor-ConvLSTM, with reduced RMSE of 0.110 and increased R2 of 0.125 (original ConvLSTM: RMSE = 0.702, R2 = 0.567; Meteor-ConvLSTM: RMSE = 0.592, R2 = 0.692), showcasing its utility for investigating the epidemiological characteristics, transmission dynamics, and epidemic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Structural rejuvenation of a well-aged metallic glass Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene? Event-triggered neuroadaptive predefined practical finite-time control for dynamic positioning vessels: A time-based generator approach Unsupervised learning of interacting topological phases from experimental observables Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1