Poornachandratejasvi Laxman Bhattar , Naran M Pindoriya , Anurag Sharma
{"title":"分发系统中的虚假数据注入:攻击者的视角","authors":"Poornachandratejasvi Laxman Bhattar , Naran M Pindoriya , Anurag Sharma","doi":"10.1016/j.ijcip.2024.100672","DOIUrl":null,"url":null,"abstract":"<div><p>The distribution system is digitizing and occupying cyberspace with the help of information and communication technologies (ICTs). It is vulnerable to cyber-attacks like false data injection (FDI) and denial-of-services (DoS). However, limited research on cyber-attacks in the distribution system is reported in the literature, and these attacks are of serious concern to distribution system operators (DSOs). The DSO's primary challenge is to understand the attacker's perspective for FDI attack construction. Thus, the work presented in this paper aims to provide an in-depth insight for DSO to apprehend the attacker's perspective, attack flow, and the nature of the FDI attack vector. The prior knowledge of attack flow to DSO can help to protect critical infrastructures from cyber-attacks. Thus, this work comprehends the attacker's behaviour for deploying the optimal budget to disrupt the distribution system operation therein by injecting a stealthy FDI vector. The attacker is resource-constrained in terms of budget and network information. Therefore, the optimal budget for attack initiation is proposed and formulated as a multi-objective optimization problem to minimize the investment and maximize the economic loss for the DSO. Constructing the attack vectors for the attacker is challenging in the limited network information. It is complex because of network characteristics such as multi-phase configurations & an unbalanced nature, and higher resistance to reactance (<span><math><mrow><mi>r</mi><mo>/</mo><mi>x</mi></mrow></math></span>) ratio. Thus, the FDI attack vector construction is proposed based on non-linear programming optimization and sensitivity analysis considering partial information from the distribution system. The simulation results are presented and compared with available methods in the literature to validate the efficacy of the proposed methods.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"45 ","pages":"Article 100672"},"PeriodicalIF":4.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"False data injection in distribution system: Attacker's perspective\",\"authors\":\"Poornachandratejasvi Laxman Bhattar , Naran M Pindoriya , Anurag Sharma\",\"doi\":\"10.1016/j.ijcip.2024.100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The distribution system is digitizing and occupying cyberspace with the help of information and communication technologies (ICTs). It is vulnerable to cyber-attacks like false data injection (FDI) and denial-of-services (DoS). However, limited research on cyber-attacks in the distribution system is reported in the literature, and these attacks are of serious concern to distribution system operators (DSOs). The DSO's primary challenge is to understand the attacker's perspective for FDI attack construction. Thus, the work presented in this paper aims to provide an in-depth insight for DSO to apprehend the attacker's perspective, attack flow, and the nature of the FDI attack vector. The prior knowledge of attack flow to DSO can help to protect critical infrastructures from cyber-attacks. Thus, this work comprehends the attacker's behaviour for deploying the optimal budget to disrupt the distribution system operation therein by injecting a stealthy FDI vector. The attacker is resource-constrained in terms of budget and network information. Therefore, the optimal budget for attack initiation is proposed and formulated as a multi-objective optimization problem to minimize the investment and maximize the economic loss for the DSO. Constructing the attack vectors for the attacker is challenging in the limited network information. It is complex because of network characteristics such as multi-phase configurations & an unbalanced nature, and higher resistance to reactance (<span><math><mrow><mi>r</mi><mo>/</mo><mi>x</mi></mrow></math></span>) ratio. Thus, the FDI attack vector construction is proposed based on non-linear programming optimization and sensitivity analysis considering partial information from the distribution system. The simulation results are presented and compared with available methods in the literature to validate the efficacy of the proposed methods.</p></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"45 \",\"pages\":\"Article 100672\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548224000131\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000131","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
False data injection in distribution system: Attacker's perspective
The distribution system is digitizing and occupying cyberspace with the help of information and communication technologies (ICTs). It is vulnerable to cyber-attacks like false data injection (FDI) and denial-of-services (DoS). However, limited research on cyber-attacks in the distribution system is reported in the literature, and these attacks are of serious concern to distribution system operators (DSOs). The DSO's primary challenge is to understand the attacker's perspective for FDI attack construction. Thus, the work presented in this paper aims to provide an in-depth insight for DSO to apprehend the attacker's perspective, attack flow, and the nature of the FDI attack vector. The prior knowledge of attack flow to DSO can help to protect critical infrastructures from cyber-attacks. Thus, this work comprehends the attacker's behaviour for deploying the optimal budget to disrupt the distribution system operation therein by injecting a stealthy FDI vector. The attacker is resource-constrained in terms of budget and network information. Therefore, the optimal budget for attack initiation is proposed and formulated as a multi-objective optimization problem to minimize the investment and maximize the economic loss for the DSO. Constructing the attack vectors for the attacker is challenging in the limited network information. It is complex because of network characteristics such as multi-phase configurations & an unbalanced nature, and higher resistance to reactance () ratio. Thus, the FDI attack vector construction is proposed based on non-linear programming optimization and sensitivity analysis considering partial information from the distribution system. The simulation results are presented and compared with available methods in the literature to validate the efficacy of the proposed methods.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.