M. Zaidan, G. Hasan, M. Bajaj, Saber Izadpanah Toos
{"title":"利用遗传算法优化 SVC 的布置和大小,改善输电线路停电时的电压崩溃点","authors":"M. Zaidan, G. Hasan, M. Bajaj, Saber Izadpanah Toos","doi":"10.11591/ijape.v13.i1.pp213-222","DOIUrl":null,"url":null,"abstract":"In many power systems, voltage instability can increase the risk of voltage collapse and, as a result, turn the power system toward a blackout. Therefore, increasing the voltage collapse point is required. A transmission line outage is an emergency condition in power systems that can lead to voltage instability and voltage collapse. Thus, it is expected to employ shunt-connected flexible AC transmission systems (FACTS) such as the static var compensator (SVC) to increase the voltage collapse point when lines outage. This paper presents the genetic algorithm (GA) application to optimal placement and sizing of an SVC for increasing voltage collapse points following lines outage. The continuation power flow (CPF) technique has been used to determine the maximum loading point (MLP) corresponding to the point of voltage collapse. Also, to reduce the number of scenarios when line outages occur, a list in ascending order is established based on the line outage priority (LOP). The IEEE 14-bus test system is chosen to carry out simulations, and an SVC will be installed in the system based on the GA results. Simulation results confirm the effectiveness of an SVC for improving voltage stability as well as increasing voltage profile.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"86 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving voltage collapse point under transmission line outage by optimal placement and sizing of SVC using genetic algorithm\",\"authors\":\"M. Zaidan, G. Hasan, M. Bajaj, Saber Izadpanah Toos\",\"doi\":\"10.11591/ijape.v13.i1.pp213-222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many power systems, voltage instability can increase the risk of voltage collapse and, as a result, turn the power system toward a blackout. Therefore, increasing the voltage collapse point is required. A transmission line outage is an emergency condition in power systems that can lead to voltage instability and voltage collapse. Thus, it is expected to employ shunt-connected flexible AC transmission systems (FACTS) such as the static var compensator (SVC) to increase the voltage collapse point when lines outage. This paper presents the genetic algorithm (GA) application to optimal placement and sizing of an SVC for increasing voltage collapse points following lines outage. The continuation power flow (CPF) technique has been used to determine the maximum loading point (MLP) corresponding to the point of voltage collapse. Also, to reduce the number of scenarios when line outages occur, a list in ascending order is established based on the line outage priority (LOP). The IEEE 14-bus test system is chosen to carry out simulations, and an SVC will be installed in the system based on the GA results. Simulation results confirm the effectiveness of an SVC for improving voltage stability as well as increasing voltage profile.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"86 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v13.i1.pp213-222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v13.i1.pp213-222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving voltage collapse point under transmission line outage by optimal placement and sizing of SVC using genetic algorithm
In many power systems, voltage instability can increase the risk of voltage collapse and, as a result, turn the power system toward a blackout. Therefore, increasing the voltage collapse point is required. A transmission line outage is an emergency condition in power systems that can lead to voltage instability and voltage collapse. Thus, it is expected to employ shunt-connected flexible AC transmission systems (FACTS) such as the static var compensator (SVC) to increase the voltage collapse point when lines outage. This paper presents the genetic algorithm (GA) application to optimal placement and sizing of an SVC for increasing voltage collapse points following lines outage. The continuation power flow (CPF) technique has been used to determine the maximum loading point (MLP) corresponding to the point of voltage collapse. Also, to reduce the number of scenarios when line outages occur, a list in ascending order is established based on the line outage priority (LOP). The IEEE 14-bus test system is chosen to carry out simulations, and an SVC will be installed in the system based on the GA results. Simulation results confirm the effectiveness of an SVC for improving voltage stability as well as increasing voltage profile.